Skip to main content
Log in

Dietary Fat Intake and Cognitive Function among Older Populations: A Systematic Review and Meta-Analysis

  • Review
  • Published:
The Journal of Prevention of Alzheimer's Disease Aims and scope Submit manuscript

Abstract

Objective

The associations between dietary fat intake and cognitive function are inconsistent and inconclusive. This study aimed to provide a quantitative synthesis of prospective cohort studies on the relationship between dietary fat intake and cognitive function among older adults.

Methods

PubMed, EMBASE, PsycINFO and Web of Science databases were searched for prospective cohort studies published in English before March 2018 reporting cognitive outcomes in relation to dietary fat intake. Four binary incident outcomes included were mild cognitive impairment (MCI), dementia, Alzheimer disease (AD) and cognitive impairment. The categories of dietary fat intake were based on fat consumption or the percentage of energy from fat consumption, including dichotomies, tertiles, quartiles and quintiles. The relative risk (RR) with the corresponding 95% confidence intervals (CIs) was pooled using a random effects model.

Results

Nine studies covering a total of 23,402 participants were included. Compared with the lowest category of consumption, the highest category of saturated fat intake was associated with an increased risk of cognitive impairment (RR = 1.40; 95% CI: 1.02-1.91) and AD (RR: 1.87, 95% CI: 1.09-3.20). The total and unsaturated fat intake was not statistically associated with cognitive outcomes with significant betweenstudy heterogeneity.

Conclusion

This study reported a detrimental association between saturated fat intake and cognitive impairment and mixed results between unsaturated fat intake and selected cognitive outcomes. Given the substantial heterogeneity in the sample size and methodology used across studies, the evidence presented here should be interpreted with caution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Buckley RF, Saling MM, Frommann I, et al. Subjective Cognitive Decline from a Phenomenological Perspective: A Review of the Qualitative Literature. J Alzheimers Dis. 2015;48 Suppl 1:S125–140.

    Google Scholar 

  2. Barnes JN. Exercise, cognitive function, and aging. Adv Physiol Educ. 2015;39:55–62.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gill SS.Seitz DP. Lifestyles and Cognitive Health: What Older Individuals Can Do to Optimize Cognitive Outcomes. Jama. 2015;314:774–775.

    Article  Google Scholar 

  4. Vercambre MN, Grodstein F. Kang JH. Dietary fat intake in relation to cognitive change in high–risk women with cardiovascular disease or vascular factors. Eur J Clin Nutr. 2010;64:1134–1140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Okereke OI, Rosner BA, Kim DH, et al. Dietary fat types and 4–year cognitive change in community–dwelling older women. Ann Neurol. 2012;72:124–134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Morris MC, Evans DA, Bienias JL, et al. Dietary fat intake and 6–year cognitive change in an older biracial community population. Neurology. 2004;62:1573–1579.

    Article  CAS  PubMed  Google Scholar 

  7. Su C, Wang H, Wang Z, et al. [Status and trend of fat and cholesterol intake among Chinese middle and old aged residents in 9 provinces from 1991 to 2009]. Wei Sheng Yan Jiu. 2013;42:72–77.

    PubMed  Google Scholar 

  8. Dehghan M, Mente A, Zhang X, et al. Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): a prospective cohort study. Lancet. 2017;390:2050–2062.

    Article  CAS  PubMed  Google Scholar 

  9. Schwab U, Lauritzen L, Tholstrup T, et al. Effect of the amount and type of dietary fat on cardiometabolic risk factors and risk of developing type 2 diabetes, cardiovascular diseases, and cancer: a systematic review. Food Nutr Res. 2014;58.

  10. Chowdhury R, Warnakula S, Kunutsor S, et al. Association of dietary, circulating, and supplement fatty acids with coronary risk: a systematic review and meta–analysis. Ann Intern Med. 2014;160:398–406.

    Article  PubMed  Google Scholar 

  11. Guasch–Ferre M, Babio N, Martinez–Gonzalez MA, et al. Dietary fat intake and risk of cardiovascular disease and all–cause mortality in a population at high risk of cardiovascular disease. Am J Clin Nutr. 2015;102:1563–1573.

    Article  PubMed  Google Scholar 

  12. Wang DD, Li Y, Chiuve SE, et al. Association of Specific Dietary Fats With Total and Cause–Specific Mortality. JAMA Intern Med. 2016;176:1134–1145.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Guasch–Ferre M, Becerra–Tomas N, Ruiz–Canela M, et al. Total and subtypes of dietary fat intake and risk of type 2 diabetes mellitus in the Prevencion con Dieta Mediterranea (PREDIMED) study. Am J Clin Nutr. 2017;105:723–735.

    Article  CAS  PubMed  Google Scholar 

  14. Ludwig DS, Willett WC, Volek JS, et al. Dietary fat: From foe to friend? Science. 2018;362:764–770.

    Article  CAS  PubMed  Google Scholar 

  15. Gonzalez S, Huerta JM, Fernandez S, et al. The relationship between dietary lipids and cognitive performance in an elderly population. Int J Food Sci Nutr. 2010;61:217–225.

    CAS  PubMed  Google Scholar 

  16. Naqvi AZ, Harty B, Mukamal KJ, et al. Monounsaturated, trans, and saturated Fatty acids and cognitive decline in women. J Am Geriatr Soc. 2011;59:837–843.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Roberts RO, Roberts LA, Geda YE, et al. Relative intake of macronutrients impacts risk of mild cognitive impairment or dementia. J Alzheimers Dis. 2012;32:329–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vercambre MN, Boutron–Ruault MC, Ritchie K, et al. Long–term association of food and nutrient intakes with cognitive and functional decline: a 13–year follow–up study of elderly French women. Br J Nutr. 2009;102:419–427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nooyens ACJ, van Gelder BM, Bueno–de–Mesquita HB, et al. Fish consumption, intake of fats and cognitive decline at middle and older age: the Doetinchem Cohort Study. Eur J Nutr. 2017.

    Google Scholar 

  20. Lehtisalo J, Lindstrom J, Ngandu T, et al. Association of Long–Term Dietary Fat Intake, Exercise, and Weight with Later Cognitive Function in the Finnish Diabetes Prevention Study. J Nutr Health Aging. 2016;20:146–154.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang Y, Chen J, Qiu J, et al. Intakes of fish and polyunsaturated fatty acids and mild–to–severe cognitive impairment risks: a dose–response meta–analysis of 21 cohort studies. Am J Clin Nutr. 2016;103:330–340.

    Article  CAS  PubMed  Google Scholar 

  22. Lin PY, Chiu CC, Huang SY, et al. A meta–analytic review of polyunsaturated fatty acid compositions in dementia. J Clin Psychiatry. 2012;73:1245–1254.

    Article  CAS  PubMed  Google Scholar 

  23. Cooper RE, Tye C, Kuntsi J, et al. Omega–3 polyunsaturated fatty acid supplementation and cognition: A systematic review and meta–analysis. J Psychopharmacol. 2015;29:753–763.

    Article  CAS  PubMed  Google Scholar 

  24. Leng Y, McEvoy CT, Allen IE, et al. Association of Sleep–Disordered Breathing With Cognitive Function and Risk of Cognitive Impairment: A Systematic Review and Meta–analysis. JAMA Neurol. 2017;74:1237–1245.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Singh B, Parsaik AK, Mielke MM, et al. Association of mediterranean diet with mild cognitive impairment and Alzheimer’s disease: a systematic review and meta–analysis. J Alzheimers Dis. 2014;39:271–282.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Quan M, Xun P, Chen C, et al. Walking Pace and the Risk of Cognitive Decline and Dementia in Elderly Populations: A Meta–analysis of Prospective Cohort Studies. J Gerontol A Biol Sci Med Sci. 2017;72:266–270.

    Article  PubMed  Google Scholar 

  27. Egger M, Davey Smith G, Schneider M, et al. Bias in meta–analysis detected by a simple, graphical test. BMJ. 1997;315:629–634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wells GA, Shea B, O’Connell D, et al. The Newcastle–Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta–Analyses. 2011. Available online: http://www.ohri.ca (accessed on 22 April 2017).

    Google Scholar 

  29. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta–analyses: the PRISMA statement. BMJ. 2009;339:b2535.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Stroup DF, Berlin JA, Morton SC, et al. Meta–analysis of observational studies in epidemiology: a proposal for reporting. Meta–analysis Of Observational Studies in Epidemiology (MOOSE) group. Jama. 2000;283:2008–2012.

    CAS  PubMed  Google Scholar 

  31. Zhang J.Yu KF. What’s the relative risk? A method of correcting the odds ratio in cohort studies of common outcomes. JAMA 1998;280:1690–1691.

    Google Scholar 

  32. Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in metaanalyses. BMJ. 2003;327:557–560.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Luchsinger JA, Tang MX, Shea S, et al. Caloric intake and the risk of Alzheimer disease. Arch Neurol. 2002;59:1258–1263.

    Article  PubMed  Google Scholar 

  34. Morris MC, Evans DA, Bienias JL, et al. Dietary fats and the risk of incident Alzheimer disease. Arch Neurol. 2003;60:194–200.

    Article  PubMed  Google Scholar 

  35. Kalmijn S, Launer LJ, Ott A, et al. Dietary fat intake and the risk of incident dementia in the Rotterdam Study. Ann Neurol. 1997;42:776–782.

    Article  CAS  PubMed  Google Scholar 

  36. Laitinen MH, Ngandu T, Rovio S, et al. Fat intake at midlife and risk of dementia and Alzheimer’s disease: a population–based study. Dement Geriatr Cogn Disord. 2006;22:99–107.

    Article  CAS  PubMed  Google Scholar 

  37. Eskelinen MH, Ngandu T, Helkala EL, et al. Fat intake at midlife and cognitive impairment later in life: a population–based CAIDE study. Int J Geriatr Psychiatry. 2008;23:741–747.

    Article  PubMed  Google Scholar 

  38. Solfrizzi V, Colacicco AM, D’Introno A, et al. Dietary fatty acids intakes and rate of mild cognitive impairment. The Italian Longitudinal Study on Aging. Exp Gerontol. 2006;41:619–627.

    CAS  PubMed  Google Scholar 

  39. Greenwood CE. Winocur G. High–fat diets, insulin resistance and declining cognitive function. Neurobiol Aging. 2005;26 Suppl 1:42–45.

    Article  CAS  Google Scholar 

  40. Morris MC. Tangney CC. Dietary fat composition and dementia risk. Neurobiol Aging. 2014;35 Suppl 2:S59–64.

    Google Scholar 

  41. Lee Y, Back JH, Kim J, et al. Systematic review of health behavioral risks and cognitive health in older adults. Int Psychogeriatr. 2010;22:174–187.

    Article  PubMed  Google Scholar 

  42. Winocur G. Greenwood CE. Studies of the effects of high fat diets on cognitive function in a rat model. Neurobiol Aging. 2005;26 Suppl 1:46–49.

    Article  CAS  Google Scholar 

  43. McGee DL, Reed DM, Yano K, et al. Ten–year incidence of coronary heart disease in the Honolulu Heart Program. Relationship to nutrient intake. Am J Epidemiol. 1984;119:667–676.

    CAS  PubMed  Google Scholar 

  44. Shekelle RB, Shryock AM, Paul O, et al. Diet, serum cholesterol, and death from coronary heart disease. The Western Electric study. N Engl J Med. 1981;304:65–70.

    CAS  Google Scholar 

  45. Sasaki S, Zhang XH. Kesteloot H. Dietary sodium, potassium, saturated fat, alcohol, and stroke mortality. Stroke. 1995;26:783–789.

    Article  CAS  PubMed  Google Scholar 

  46. Breteler MM. Vascular risk factors for Alzheimer’s disease: an epidemiologic perspective. Neurobiol Aging. 2000;21:153–160.

    Article  CAS  PubMed  Google Scholar 

  47. Awad IA, Spetzler RF, Hodak JA, et al. Incidental subcortical lesions identified on magnetic resonance imaging in the elderly. I. Correlation with age and cerebrovascular risk factors. Stroke. 1986;17:1084–1089.

    CAS  PubMed  Google Scholar 

  48. Hofman A, Ott A, Breteler MM, et al. Atherosclerosis, apolipoprotein E, and prevalence of dementia and Alzheimer’s disease in the Rotterdam Study. Lancet. 1997;349:151–154.

    Article  CAS  PubMed  Google Scholar 

  49. Mensink RP. Katan MB. Effect of dietary fatty acids on serum lipids and lipoproteins. A meta–analysis of 27 trials. Arterioscler Thromb. 1992;12:911–919.

    CAS  PubMed  Google Scholar 

  50. Siri–Tarino PW, Sun Q, Hu FB, et al. Saturated fat, carbohydrate, and cardiovascular disease. Am J Clin Nutr. 2010;91:502–509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Steen E, Terry BM, Rivera EJ, et al. Impaired insulin and insulin–like growth factor expression and signaling mechanisms in Alzheimer’s disease––is this type 3 diabetes? J Alzheimers Dis. 2005;7:63–80.

    Article  CAS  PubMed  Google Scholar 

  52. Moloney AM, Griffin RJ, Timmons S, et al. Defects in IGF–1 receptor, insulin receptor and IRS–1/2 in Alzheimer’s disease indicate possible resistance to IGF–1 and insulin signalling. Neurobiol Aging. 2010;31:224–243.

    Article  CAS  PubMed  Google Scholar 

  53. Freeman LR, Haley–Zitlin V, Rosenberger DS, et al. Damaging effects of a high–fat diet to the brain and cognition: a review of proposed mechanisms. Nutr Neurosci. 2014;17:241–251.

    Article  PubMed  Google Scholar 

  54. Solfrizzi V, Frisardi V, Capurso C, et al. Dietary fatty acids in dementia and predementia syndromes: epidemiological evidence and possible underlying mechanisms. Ageing Res Rev. 2010;9:184–199.

    Article  CAS  PubMed  Google Scholar 

  55. Backhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004;101:15718–15723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kim KA, Gu W, Lee IA, et al. High fat diet–induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PLoS One. 2012;7:e47713.

    Article  CAS  Google Scholar 

  57. de Wit N, Derrien M, Bosch–Vermeulen H, et al. Saturated fat stimulates obesity and hepatic steatosis and affects gut microbiota composition by an enhanced overflow of dietary fat to the distal intestine. Am J Physiol Gastrointest Liver Physiol. 2012;303:G589–599.

    Article  CAS  PubMed  Google Scholar 

  58. Devore EE, Stampfer MJ, Breteler MM, et al. Dietary fat intake and cognitive decline in women with type 2 diabetes. Diabetes Care. 2009;32:635–640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Briante R, Febbraio F. Nucci R. Antioxidant properties of low molecular weight phenols present in the mediterranean diet. J Agric Food Chem. 2003;51:6975–6981.

    Article  CAS  PubMed  Google Scholar 

  60. Padurariu M, Ciobica A, Hritcu L, et al. Changes of some oxidative stress markers in the serum of patients with mild cognitive impairment and Alzheimer’s disease. Neurosci Lett. 2010;469:6–10.

    Article  CAS  PubMed  Google Scholar 

  61. Vassiliou EK, Gonzalez A, Garcia C, et al. Oleic acid and peanut oil high in oleic acid reverse the inhibitory effect of insulin production of the inflammatory cytokine TNF–alpha both in vitro and in vivo systems. Lipids Health Dis. 2009;8:25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Borniquel S, Jansson EA, Cole MP, et al. Nitrated oleic acid up–regulates PPARgamma and attenuates experimental inflammatory bowel disease. Free Radic Biol Med. 2010;48:499–505.

    Article  CAS  PubMed  Google Scholar 

  63. Berry EM, Eisenberg S, Haratz D, et al. Effects of diets rich in monounsaturated fatty acids on plasma lipoproteins––the Jerusalem Nutrition Study: high MUFAs vs high PUFAs. Am J Clin Nutr. 1991;53:899–907.

    Article  CAS  PubMed  Google Scholar 

  64. Hodson L, Skeaff CM. Chisholm WA. The effect of replacing dietary saturated fat with polyunsaturated or monounsaturated fat on plasma lipids in freeliving young adults. Eur J Clin Nutr. 2001;55:908–915.

    Article  CAS  PubMed  Google Scholar 

  65. Moreno JA, Lopez–Miranda J, Perez–Martinez P, et al. A monounsaturated fatty acid–rich diet reduces macrophage uptake of plasma oxidised lowdensity lipoprotein in healthy young men. Br J Nutr. 2008;100:569–575.

    Article  CAS  PubMed  Google Scholar 

  66. Gebauer SK, West SG, Kay CD, et al. Effects of pistachios on cardiovascular disease risk factors and potential mechanisms of action: a dose–response study. Am J Clin Nutr. 2008;88:651–659.

    Article  CAS  PubMed  Google Scholar 

  67. Gumbiner B, Low CC. Reaven PD. Effects of a monounsaturated fatty acidenriched hypocaloric diet on cardiovascular risk factors in obese patients with type 2 diabetes. Diabetes Care. 1998;21:9–15.

    Article  CAS  PubMed  Google Scholar 

  68. Clarke SD. Polyunsaturated fatty acid regulation of gene transcription: a molecular mechanism to improve the metabolic syndrome. J Nutr. 2001;131:1129–1132.

    Article  CAS  PubMed  Google Scholar 

  69. Huang T, Wahlqvist ML, Xu T, et al. Increased plasma n–3 polyunsaturated fatty acid is associated with improved insulin sensitivity in type 2 diabetes in China. Mol Nutr Food Res. 2010;54 Suppl 1:S112–119.

    Google Scholar 

  70. Lee JS, Pinnamaneni SK, Eo SJ, et al. Saturated, but not n–6 polyunsaturated, fatty acids induce insulin resistance: role of intramuscular accumulation of lipid metabolites. J Appl Physiol (1985). 2006;100:1467–1474.

    Article  CAS  Google Scholar 

  71. Marchioli R, Barzi F, Bomba E, et al. Early protection against sudden death by n–3 polyunsaturated fatty acids after myocardial infarction: timecourse analysis of the results of the Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto Miocardico (GISSI)–Prevenzione. Circulation. 2002;105:1897–1903.

    Article  CAS  PubMed  Google Scholar 

  72. Keli SO, Feskens EJ. Kromhout D. Fish consumption and risk of stroke. The Zutphen Study. Stroke. 1994;25:328–332.

    Article  CAS  PubMed  Google Scholar 

  73. Lopez GH, Ilincheta de Boschero MG, Castagnet PI, et al. Ageassociated changes in the content and fatty acid composition of brain glycerophospholipids. Comp Biochem Physiol B Biochem Mol Biol. 1995;112:331–343.

    Article  CAS  PubMed  Google Scholar 

  74. Solfrizzi V, Colacicco AM, D’Introno A, et al. Dietary intake of unsaturated fatty acids and age–related cognitive decline: a 8.5–year follow–up of the Italian Longitudinal Study on Aging. Neurobiol Aging. 2006;27:1694–1704.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beibei Xu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, GY., Li, M., Han, L. et al. Dietary Fat Intake and Cognitive Function among Older Populations: A Systematic Review and Meta-Analysis. J Prev Alzheimers Dis 6, 204–211 (2019). https://doi.org/10.14283/jpad.2019.9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.14283/jpad.2019.9

Key words

Navigation