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Abstract 

Based on decode-and-forward (DF) relaying scheme,  the exact closed-form 

expression of the outage probability (OP) for the home mobile-to-mobile (M2M) 

cooperative networks over N-Nakagami fading channels is derived in this paper. Then the 

OP performance under different conditions is evaluated through numerical simulations. 

The numerical simulation results coincide with the theoretical results well, and the 

accuracy of the theoretical results is verified. The simulation results showed that: the 

fading coefficient, the number of cascaded components, the relative geometrical gain, and 

the power-allocation parameter have an important influence on the OP performance. 

 

Keywords: home M2M communication, N-Nakagami fading channels, decode-and-
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1. Introduction 

Mobile-to-mobile (M2M) communication has attracted wide research interest in recent 

years. It is widely employed in many popular wireless communication systems, such as 

mobile ad-hoc networks and home networks [1]. Home M2M networks have been 

steadily gaining popularity especially in homes and office spaces. It allows multiple users 

to exchange information, share data, interact with ideas, and cooperate on common goals 

across geographical and time boundaries [2]. The higher simplicity and affordability of 

home M2M networks are achieved through the connectivity of devices, such as 

smartphones, PDAs and tablets [3]. When the devices are in motion, the double-Rayleigh 

fading model has been shown to be applicable [4]. Extending this model to the more 

realistic Nakagami fading, a double-Nakagami fading model has also been considered [5]. 
The moments-generating, probability density, cumulative distribution, and moments 

functions of the N-Nakagami distribution are developed in closed form using the Meijer’s 

G-function [6]. 

Cooperative diversity has been proposed as a promising solution for the high data-rate 

coverage required in home M2M networks. In [7], the author derived an exact and closed-

form expression for outage probability (OP) of opportunistic amplify-and-forward (AF) 

relaying over Nakagami-m fading channels. Similar research is done just based on 

selection decode-and-forward (DF) relaying scheme in [8]. Based on AF relaying scheme, 

[9] investigated pairwise error probability (PEP) for the cooperative inter-vehicular 

communication (IVC) system over double-Nakagami fading channels. Based on DF 

relaying scheme, [10] investigated the exact symbol error rate (SER) and asymptotic SER 

expressions of the M2M system by using the widely studied moment generating function 

(MGF) approach over double-Nakagami fading channels.  

However, to the best knowledge of the author, no previous work has been reported in 

the literature on OP performance of the home M2M cooperative networks over N-
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Nakagami fading channels. In the present work, we extend our analysis for N-Nakagami 

case which subsumes double-Nakagami in [9, 10] as special cases. Based on DF relaying 

scheme, the exact closed-form OP expression for the home M2M cooperative networks 

over N-Nakagami fading channels is derived.  

The rest of the paper is organized as follows. The home M2M cooperative networks 

model is presented in Section 2. Section 3 provides the exact closed-form OP expression 

for the home M2M cooperative networks. Section 4 conducts Monte Carlo simulations to 

verify the analytical results. Concluding remarks are given in Section 5. 

                            

2.  The System Model 

We consider a three-node cooperation model, namely mobile source (MS), mobile 

relay (MR), and mobile destination (MD) nodes. The nodes operate in half-duplex mode, 

which are equipped with a single pair of transmitter and receiver antennas. 

According to [9], we let dSD, dSR, and dRD represent the distances of source-to-

destination (MS→MD), source-to-relay (MS→MR), and relay-to-destination (MR→MD) 

links, respectively. Assuming the path loss between MS→MD to be unity, the relative 

gain of MS→MR and MR→MD links are defined as GSR = (dSD/dSR)
v
 and GRD = 

(dSD/dRD)
v
, respectively, where v is the path loss coefficient[11]. We further define the 

relative geometrical gain μ = GSR/GRD (in decibels), which indicates the location of the 

relay with respect to the source and destination. When the relay is close to the destination 

node, the values of μ are negative. When the relay is close to the source node, the values 

of μ are positive. When the relay has the same distance to the source and destination 

nodes, μ is 0dB. 

Let hSD, hSR, and hRD represent the complex channel coefficients of MS→MD, MS→

MR, and MR→MD links, respectively, which follow N-Nakagami distribution. hSD, hSR, 

and hRD are assumed to be a product of statistically independent, but not necessarily 

identically distributed, N independent random variables 

1

N

i

i

h a


                                                                  (1) 

where N is the number of cascaded components. al is a Nakagami distributed random 

variable with probability density function (PDF) 
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where Γ(·) is the Gamma function, m is the fading coefficient and  is a scaling factor.  

The PDF of h is given by[4] 

1

,0 2
0, ,....,

1

1

2
( )

Ω
Γ( )

N

N
N i

h N m mN
i i

i

i

m
f h G h

h m







 
  

 




                             (3) 

where G[·] is the Meijer’s G-function.   

Let ySD=hSD
2
, ySR=hSR

2
, and yRD=hRD

2
.The corresponding cumulative density 

functions (CDF) of y can be derived as[4]  
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By taking the first derivative of (4) with respect to y, the corresponding PDF can be 

obtained as [4]  
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Based on the DF cooperation protocol, the received signals rSD and rSR at the MR and 

the MD during the first time slot can be written as [7] 

SD SD Dr KEh x n                                               (6) 

SR SR SR SRr G KEh x n                                            (7) 

where x denotes the transmitted signal, nSR and nD are the zero-mean complex Gaussian 

random variables with variance N0/2 per dimension. Here, E is the total energy which is 

used by both source and relay terminals during two time slots. K is the power-allocation 

parameter that controls the fraction of power reserved for the broadcasting phase. If 

K=0.5, the equal power allocation (EPA) scheme is used. 

During the second time slot, the relay terminal decodes its received signal and 

transmits the signal if it is correctly decoded. The received signal at the destination is 

therefore given by
 
 

(1 )RD RD RD RDr k G K Eh x n                                         (8) 

where k = 1, the symbol is correctly decoded, otherwise k=0. nRD is a conditionally zero-

mean complex Gaussian random variable with variance N0/2 per dimension.              

If selection combining (SC) method is used at the MD, the output SNR at the 

destination can then be calculated as [11] 

max( , )SC SD RDγ γ kγ                                                  (9) 

where 
2
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3.  The OP for the Home M2M Cooperative Networks 

In this section, the closed-form OP expression for the home M2M cooperative 

networks is derived. 

The mutual information between the source and relay is  

           2

1
log (1 )

2
SR SRI γ                                                   (12) 

where  
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If the mutual information ISR is lower than spectral efficiency R, the relay will not be 

used for cooperation. It can be denoted as 

  2

1
Pr( ) Pr( log (1 ) )

2
outsr SR SRP I R γ R                      (14) 

So the mutual information of the destination received during two time slots IDF can be 

denoted as 

             2

1
log (1 )

2
DF SDI γ                                                   (15) 

If the mutual information ISR is not lower than spectral efficiency R, the relay will be 
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used for cooperation. IDF is given as 

    2 2

1 1
log (1 ) log (1 max( , ))

2 2
DF SC SD RDI γ γ γ                (16) 

The outage probability of the home M2M networks can be expressed as   
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From Appendix A, we present a new closed-form OP expression as 
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4.  Numerical Results 

In this section, some numerical results are presented to illustrate and verify the OP 

results obtained in the previous sections.  

Figure 1 presents the OP performance of the home M2M cooperative networks over N-

Nakagami fading channels. The relative geometrical gain μ=0dB. The power-allocation 

parameter K=0.5. The given threshold th=-4dB. Here, we consider the following 

scenarios based on the combinations of the number of cascaded components N and fading 

coefficient m: 

(1)Scenario 1: mSD = 1, mSR = 1, mRD =1 and NSD =NSR=NRD =2. 

(2)Scenario 2: mSD=2, mSR =2, mRD =2 and NSD =NSR =NRD=2. 

(3)Scenario 3: mSD=3, mSR =3, mRD =3 and NSD =NSR =NRD=2. 

From Figure 1, we can obtain that the numerical simulation results coincide with the 

theoretical results well，and the accuracy of the theoretical OP is verified. Simulation 

results show that the OP performance is improved with the fading coefficient m 

increased. For example, when SNR=10dB, m=1, the OP is 2×10
-2

, m=2, the OP is 1×10
-3

, 

m=3, the OP is 3×10
-5

. When the m is fixed, with the increase of SNR, the OP is reduced 

gradually.  
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Figure 1. The OP Performance over N-Nakagami Fading Channels 
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Figure 2. The Effect of the Power-allocation Parameter K on the OP 
Performance  

Figure 2 presents the effect of the power-allocation parameter K on the OP 

performance of the home M2M networks over N-Nakagami fading channels with various 

values of SNR. The number of cascaded components N=2. The fading coefficient m=2. 

The relative geometrical gain μ=0dB. The given threshold th=4dB.Simulation results 

show that the OP performance is improved with the SNR increased. For example, when 

K=0.5, SNR=10dB, the OP is 2×10
-1

, SNR=20dB, the OP is 4×10
-5

, SNR=30dB, the OP 

is 2×10
-8

. When SNR=10dB, the optimum value of K is 0.6 approximately; SNR=20dB, 

the optimum value of K is 0.6 approximately; SNR=30dB, the optimum value of K is 0.6 

approximately. 
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Figure 3. The Effect of the Relative Geometrical Gain μ on the OP 
Performance 
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Figure 4. The Effect of the Number of Cascaded Components N on the OP 
Performance 

Figure 3 presents the effect of the relative geometrical gain μ on the OP performance of 

the home M2M networks over N-Nakagami fading channels. The number of cascaded 

components N=2. The fading coefficient m=2. The given threshold th=4dB.The relative 

geometrical gain μ=10dB,0dB,-10dB.The power-allocation parameter K=0.5.Simulation 

results show that the OP performance is improved as μ reduced. For example, when 

SNR=10dB, μ=10dB, the OP is 2×10
-1

, μ=0dB, the OP is 2×10
-2

, μ=-10dB, the OP is 

1×10
-2

. When the μ is fixed, with the increase of SNR, the OP is reduced gradually.  

Figure 4 presents the effect of the number of cascaded components N on the OP 

performance of the home M2M networks over N-Nakagami fading channels. The number 

of cascaded components N=2,3,4, which respectively denotes the 2-Nakagami, 3-

Nakagami, 4-Nakagami fading channels. The fading coefficient m=2. The relative 

geometrical gain μ=0dB. The power-allocation parameter K=0.5. The given threshold 

th=0dB.Simulation results show that the OP performance is degraded as N increased. 

For example, when SNR=10dB, N=2, the OP is 2×10
-3

, N=3, the OP is 1×10
-2

, N=4, the 

OP is 3×10
-2

.This because the fading severity of the cascaded channels increases as N 

increased. When the N is fixed, with the increase of SNR, the OP is reduced gradually.  
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5. Conclusions 

The exact closed-form OP expression for the home M2M networks over N-Nakagami 

fading channels is investigated in this paper. The simulation results show that: the fading 

coefficient m, and the number of cascaded components N, the relative geometrical gain μ, 

and the power-allocation parameter K have an important influence on the OP performance. 

The expressions derived here are simple to compute and thus complete and accurate 

performance results can easily be obtained with negligible computational effort. In the 

future, we will consider the impact of the correlated channels on the OP performance of 

the home M2M networks.   
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Appendix  A 

In the following subsections, we firstly evaluate I1.According to (14), we can obtain  
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SR SRγ KG γ                                                       (22) 

To evaluate the integral in (21), the following integral function can be employed[12]  
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(19) can be given as 
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We follow a procedure similar to (19) to yield as 
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where 

SDγ Kγ                                                   (26) 

I1 can be given as  
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Next, we will evaluate I2. 
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where 

(1 )RD RDγ G K γ                                                      (30) 

I2 can be given as 
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