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Abstract

Ultra high definition (UHD) game scenes have caused the memory bandwidth problem.
The lossless DPCM-GR based compression algorithm [12] wusing NVIDIA
CUDA(Compute Unified Device Architecture) like general purpose GPU )
computing relieves the bandwidth problem without sacrificing image qu Ii%uhlch
supports bit parallel pipelining. This paper increases the memory band\@ iciency
using the shared memory of CUDA based on the compre§sian alg
various asynchronous transfer configurations which can &Qﬁgm
data transfer between the Host and the CUDA de c@e
locked host memory. Experimental results show I‘( omputing obtains
the maximum 87.5 and 30.6 times speedups fo 650T|\ T330, respectively,
comparing to Host CPU. Also, the maxim ductiops ¢of, the compression time for
GTX650Ti and GT330 are 54.1% and 30 es pectlvex ong various concurrency
transfer configurations.

Keywords: GPGPU (Genera %e GP %WDIA CUDA (Compute Unified
Device Architecture), Lossle é&mp res n, synchronous Transfer, DPCM-GR
(Differential Pulse Code dulatlon olomb Rice), concurrency transfer
configurations

1. Introductio ﬁ
In the latest &ter game isplay resolution has been rapidly increasing from
6X

HD(1920x 160, 7680x4320) for various digital devices such as
large screemymenitors, TVs, and smartphones. The huge memory bandwidth has
been needed to me HD resolution of the game scenes on those platforms. The

display. In or prevent deterioration of image quality, in general, the lossless
compressior is stitable for the compression of UHD game image.

Instea&%ﬂhe image quality degradation, the compression ratio of the lossless
compre algorithm is not fixed because of the variable-length compressed data. Since
t compression algorithm has the fixed compression ratio, the memory access
&

game image c& n has been studied to reduce the memory bandwidth for UHD
b

Is simple and the bit parallel processing is easy. To apply lossy compressions,

er, there are constrains that must be visually lossless. Both the memory interface

and pit parallelism should be addressed in order to use the variable-length data by

applying lossless compressions. A lot of hardware architectures for the lossless
compression are studied in [1-6].

Many studies using NVIDIA CUDA [7] like GPGPU computing have been conducted
to make the large-scale processors inside in GPU performed in parallel [8-11]. In [8], to
compute the summed area table, the given memory bandwidth is efficiently used by
dividing the input data into a sub-image of a square where the parameters are spread and
by reducing the amount of global memory accesses by almost half. The optimization
technique was proposed to accelerate the color format conversion of the non-memory-
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aligned webcam video using CUDA in [9]. The memory for accelerating the generation of
the maximum-minimum octree using CUDA was proposed in [10]. Real-time
DXT(DirectX Texture) compression techniques was proposed by utilizing the CUDA
programming in [11]. However, since the DXT compression algorithm is lossy, the image
degradation cannot be prevented. In the previous work [12], the author proposed the
lossless compression of DPCM-GR (Differential Pulse Code Modulation — Golomb Rice)
by modifying the DDPCM-GR compression algorithm [4] which can support bit-parallel
processing, in order to resolve the memory bandwidth issue for the UHD (4096x2160)
game image.

In this paper, the CUDA-based lossless image compression technique for the UHD
game is proposed based on the DPCM-GR algorithm [12] which can prevent the image
degradation. For this, the memory efficiency is considered through the use of shared
memory of CUDA. For the performance optimization, also, various asynchronous transfer
configurations which can overlap the kernel execution and data transfer between H do
CUDA are implemented with the page-locked host memory. Experiment s
evaluate the asynchronous transfer configurations for the UHD game image @ ssion.

2. Related Works for Lossless Image Compre%
0 ent

HMD-ExpG (Hierarchical Minimum and Differen Galomb) algorithm
[1] computes both the minimum value and its d|ff‘ er pixels for 2x2,
4x4, 8x8 hierarchical blocks, respectively, for redlctlo en the exponential

Golomb coding is performed for entropy codi t has a 6 quantlzed table address to
enhance the compression ratio. The advan hat |t c rs the random access and
ar

the compression ratio of 2.1:1 is relatiy . Bu ortcommg is that it has the
table overhead (6.1KB/frame) and t or exponential Golomb coding,

e
12 cycles, is high. Furthermor e methos\ obtain the minimum value for
hierarchically calculating the d e is difficult to operate at a high speed bit parallel
pipelines and the hardware i entatlon\E icult to support the burst access.

To reduce the decodi atency 0 xpG algorithm [1], HMD-NBS (HMD +
Nonzero Bit Selectio ithm [2] the same prediction method of HMD-ExpG
However, it uses d’@ent NBS_ method for entropy coding. It divides the block having
the difference va f|ve d obtains the minimum number of bits to represent
the differenceiétween the minitedim value per each group. Then the starting position of
@ alue group/Can be seen in advance. The advantage of this approach is to
reduce the deéedding cy @ cycles. Still, it is difficult to operate at a high speed pipeline
and having a bit par Ecause of the table overhead in HMD-ExpG [1].

HACP-SBT hlcal Average Copy Prediction + Significant Bit Truncation)
algorithm [3] five ways like horizontal average prediction, vertical average
prediction, Horizantal direct prediction, vertical direct prediction, and four-pixel average
predicti%ﬁe prediction. And for the entropy coding, it uses SBT scheme similar to

the BS algorithm [2] which includes the minimum number of bits for each group.
c%was the high compression ratio of 2.56:1, the memory bandwidth reduction can be
’ %) However, it cannot support the random access. Also, it is difficult to implement the
pipelined bit-parallel hardware because of the encoding cycle overhead and the complex
prediction.

DDPCM-GR algorithm (Differential Differential Pulse Code Modulation + Golomb-
Rice) [4] uses DDPCM [5-6] devised in ATI for the prediction and Golomb-Rice for
entropy coding. The advantage of this compression algorithm can support the fully
pipelined bit-parallel hardware structure using a simple prediction method. It provides the
two-cycle encoding/decoding in pipelined fashion. The compression ratio is 1.64:1 for the
8x8 block.
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The DDPCM [5-6] devised in ATl is for the Z (depth) data compression in 3D graphics.
It is assumed that the Z depth value is linearly interpolated in DDPCM. The depth value is
distinguished as -1, 0, 1, and an escape value after DDPCM. Then it performs entropy
coding by mapping 0, 1, -1, and an escape value into 00, 01, 10, and 11, respectively. But,
since DDPCM is originally devised to compress the Z data, a simpler DPCM (differential
pulse code modulation) can be applied without the degradation of the compression ratio
for the Game scene color pixels. In the previous work [12], the author proposed the
lossless compression of DPCM-GR by modifying the DDPCM-GR compression
algorithm [4] to support the bit-parallel processing.

3. DPCM-GR Luossless Image Compression

1. Divide Block 4096x2160 Image .
4x4 4x4 4x4 V
block | | block |~ | block

- O
< Po dp, dp,

a x dps |, dp;

P1of| dpt: )| dpis

;¢8~§% 0
c. 9-k bits k bits
3. Parallel GRER¥oding 12 ¢ i
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Figure.l' (OPCM-GR Lossless Compression Algorithm [12]

2. DPCM

scribes the DPCM-GR lossless compression algorithm [12] by
DPCM-GR algorithm [4] to support the bit-parallel processing. As in
full lossless compression algorithms for the UHD game image consists of
majm steps like (1) dividing the original image data into 4 x 4 blocks, (2) DPCM

d for the data block, (3) Golomb-Rice parallel encoding, and (4) GR Packing. To
c late DPCM, one seed data and fifteen difference data are derived for each data block.
By applying the GR bit parallel algorithm to the fifteen difference data, overall, it derives
a lossless data compression.

The seed data is the uncompressed original data. The DPCM difference data is divided
by 2 for GR encoding. In this paper, the GR parameter, k, is assumed to be 2. Then, the
remainder portion is a 15 x 2 = 30 bits as a fixed bit number. And fifteen quotients are
represented in unary code. For example, the quotient value of 3 can be coded as 1110 (0 is
a separate bit). The separation bit positions (t;) can be computed at the same time in bit-
parallel in [Eq.1].

This section
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t=>.q;+i—1(1<i<15)

=1 [Eq. 1]

For example, when g;=1, 0,=3, and qs=5, the unary code is 101110111110 and

separation bits are t;=q;=1, t,=q;+Q,+1=5, and ts=q;+g,+gs+2=11. If the length of

compressed bits is longer than that of the original bits, GR packing chooses the original

one. Otherwise, in Figure 1, each bit fields for the seed data, the length, the remainder,
and the unary code are 8 bit, 7 bit, 30 bit, and 15~68 bit wide, respectively.

4. Asynchronous Compression Using GPGPU CUDA

This section optimally implements the lossy DPCM-GR compression algorithm [12]
using GPGPU CUDA computing. First, the original game image of UHD(4096x2160)
should be transferred to the CUDA device memory from the Host memory. .

CUDA thread mapping for UHD(4096x2160) Image QE

CUDA Grid CUDA Block \% %&*
(blockldx.x, blockldx.y) (threadIdx.x, thrga: (x4bw. b-image)
‘:

Block | Block
©0 | ©1
N
Block | Block | Block i 1\6
wo | @y | @2
Block | Block § Block = A |
20 | @1 | @2 N al =
>
Figure 2. CUDA Grid, g’fA for DPCM-GR Compression [12]

In Figure 2, a s game e is divided into 4x4 sub-images which are
handled by each @lhread %PCM computation. The grid consists of CUDA
blocks which h r own ientifier (blockldx.x, blockldx.y). Each block also
consists 0 threa h have their own thread identifier (threadldx.x,
threadldx. num vailable CUDA threads varies as the CUDA environment
provided by the gra }%hardware. After all CUDA threads simultaneously compute
DPCM for 4x4 sub@g s, they perform GR encoding, as shown in (2) DPCM and (3)
parallel GR enc Figure 1. Finally, each CUDA thread performs (4) GR packing of
Figure 1. All cked data of its 4x4 sub-image for whole UHD image is going to be
transferree

Thergrasgwarious types of memory inside CUDA system. The largest but slow memory
is thesGlebal device memory. The data can be transmitted and received between Host and
|~ hrough it. The Local memory is directly handled by GPU, which is a small
rtibn allocated in the Global memory. There are also areas for constants and texture
a in the Global memory. The fastest memories are the shared memory and register. The
access speed of the shared memory is about 100 times faster than that of the global
memory which is made of DRAM.

In this paper, in order to utilize the fast access speed of the shared memory, once each
CUDA thread loads 4x4 sub-image on the shared memory, and then it performs its DPCM
computation and GR encoding. If CUDA Compute Capability compiles the DPCM-GR
kernel of this paper with its compile option of “-ptxas-options-v”’, we can obtain the
shared memory and register usage in Table 1. It is reasonable that the number of register
per thread is 14 and the usage of shared memory per block is 124bytes.
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Table 1. Shared Memory and Register Usage

Memory Type Usage

Shared Memory per Block | 124 bytes

Register per Thread 14 registers

In order to optimize the performance, the CUDA compression kernel can be
overlapped by the data transmission between Host and CUDA using asynchronous
function processing. The page-locked (pinned) hosts memory should be used for the
asynchronous data transfer. The page-locked memory is faster than the general Host
memory. Also the CUDA stream can make both the kernel processing and the
asynchronous transfer overlapped in pipelined fashion.

In this paper, the asynchronous function overlaps the CUDA DPCM- el
execution with the transfers of both the original image from Host to C nd the
compressed data from CUDA to Host. In Figure 3, four CUDA configurations for the
asynchronous transfer are shown. The configuration AN the S@Hich serially
performs all data transfer and kernel executions. configuration” B (two-way
concurrency 1) is that the original image data tra m Host to A is serial and
the kernel execution and the compressed data tran om CL%ﬂ—mst is overlapped.
In the configuration C (two-way concurrency 2)mthat the original ifnage data transfer from
Host to CUDA and the kernel execution |§§pped a compressed data transfer
from CUDA to Host is serial. Finally in‘ figura hree-way concurrency), the

the compressed data transfer fro
pipelined fashion.

This paper eval e pe‘r ance of four concurrency

con@uraﬂor@ough experiments.

re asynchronously overlapped in

original image data transfer from H?é pressmn kernel execution, and
A t

N
@
-way concurrency? (up to two times faster in pipelined fashion)
HCT| K1
[HC2 | k2
O HC3 | K3 |

L Hca [ k4 [ CUDA-to-Host transfer ]

Q O D. Three-way concurrency (up to three times faster in pipelined fashion)

Figure 3. Four Concurrency Configurations According to Asynchronous
Transfers [12]

5. Performance Evaluation

In this Section, to evaluate the performance of four concurrency configurations about
the CUDA kernel execution and the asynchronous data transfer, two systems including
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GPGPU CUDA systems such as NIVIA GeForce GTX G650Ti and GT330M are
prepared as shown in Table 2.

For the experiments, the system | of Table 2 is about Intel(R) Core(TM) i7-4770 CPU
@ 3.40GHz 3.40GHz with 8GB RAM and NVIDIA GeForce GTX650Ti (Compute
Capability 3.0, 768 Cores, 1.03GHz, 2048MB Global Memory). Also, the system Il of
Table 2 is about Intel(R) Core(TM) i5 CPU M520 @ 2.40GHz 2.40GHz with 8GB RAM
and NVIDIA GeForce GT330M (Compute Capability 1.2, 48 Cores, 1.1GHz, 256MB
Global Memory).

Under the asynchronous transfer environment using the page-locked Host memory, the
memory bandwidths of the Host-to-CUDA transfer and the CUDA-to-Host transfer are
good up to 11847.8MB/s and 12019.2MB/s, respectively.

This paper uses six benchmark UHD (4096x2160) game images for experiments in
Figure 4. To compute the computation time reduction, the Host CPU execution times for
DPCM-GR compression for six benchmark images of Figure 4 are measured accorgding to
System | and System Il as in Table 3. The average execution CPU times of Sy: d
System Il are 1019.45ms and 1686.76ms, respectively. The average compr %o is
0.68 for six benchmark images.

L 4
Table 2. GPGPU CUDA Computir@on@
System | @ Sys%/

Intel(R) Cafe(\M) i7; %(R) Core(TM) 5
Host CPU 4770 CP 3.40GHz Y M520 @ 2.40GHz
3.40G ~ S.4OGHZ

CPU RAM 80&@4‘ sg\\v 8GM

& A
GPGPU CUDA System \\“‘ 650 %'Ao\ joe GTX | NVIDIA GeForce
\g
Driver version S;' 7.5 ® 6.5
CUDA Capaﬂ.'ﬂ‘ . Q% 1.2
Total bml‘ory 048MB 256MB
%‘ 6@ 768 Cores = 48 Cores =
Cores 4 Multiprocessors x 6 Multiprocessors x
_{@ 192 CUDA cores 8 CUDA cores
GPU Clock\ate 1.03 GHz 1.1 GHz
Sww%mory/block 48KB 16KB

'Msize 32 32

% Max threads per block 512 512

H2C ~ Pinned — memory | 115,78 MmB/s 12170.3 MB/s
bandwidth

C2H Pinned memory

bandwidth 12019.2 MB/s 12228.3 MB/s
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Image 3 [15]

Image 4 [16] Image 5 [17] Image 6 [%‘

Figure 4. Benchmark UHD (4096x2160 Resolution) Game Ir@%‘

*
Table 3. Host CPU Times and Compression Ra@ Benc%w Images
Host CPU Time (ms) Q \'
pressiw

System | Systeﬂ Cn
‘ -
image 1| 103156 | +16998% = B2l

Image 2 | 1039.35 C1702.93* N 0743
(TERN
Image 3 10@@ 170484 N 0652

e

Image 4 | 1038.21 E§‘? 0.847
Im )1002.73 66.89 0.615
<_®g:6 w 1649.12 0.601
O\avera e ‘OMS 1686.76 0.680

Figure 5 present mpression times according to four concurrency configurations
(A, B, C,and D) re 3 for two Systems | and Il in Table 2 under the GPGPU CUDA
computing env@nt. In addition, four types of the original image slices like 2, 4, 8,
and 16 arg applied for the asynchronous pipelined processing. The performance
difference ng the execution times for six benchmark images are negligible. It is also
same oQ‘ ose of four image slices. The reason is that the preparation overhead time
@ the kernel execution and the data transfer does much more important role.
%wever, Figure 5 shows the clear performance differences among four concurrency
configurations in two Systems | and 1. The configuration D (three-way concurrency) has
the best performance which reduce the compression time up to 54.1% and 30.3%
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Figure 7. Performance Gain (Time Gain% and SpeedUp Gain%) According
to Graphics System and Concurrency Configurations
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Than the concurrency configuration A (Serial) for System | and 1l with GTX650Ti and
GT330, respectively. The configuration B (two-way concurrency 1) has the performance
gain up to 44.3% and 9.3% about the compression time than the concurrency
configuration A (Serial) for System | and Il with GTX650Ti and GT330, respectively.
Also, the configuration C (two-way concurrency 2) reduce the compression time up to
23.8% and 7.4% than the concurrency configuration A (Serial) for System I and Il with
GTX650Ti and GT330, respectively. The reason where the performance of the
configuration C is not better than that of the configuration B is that the compressed data is
smaller and more irregular than the original image.

Figure 6 shows the speed ups of the GPCPU CUDA computation time than the Host
computation time. For two Systems | and Il, four concurrency configurations like A, B, C,
and D have the speed ups of 40.2, 72.1, 44.3, and 87.5 times in the GTX 650 Ti than the
Host computation time. For GT330M, four concurrency configurations like A, B, C, and
D have the speed ups of 21.3, 28.0, 23.0, and 30.6 times than the Host computatiO\tin;.o

Overall the configuration D is best.
Figure 7 explains the time gain and the speed up gain for four n@rrency
d

configurations according to two Systems | and Il. The speed iips of A th Din

GTX 650Ti are 79.5%, 10.3%, and 117.8%, respectlvel
others in GT330M are 31.3%, 7.9%, and 43.4%, respe

the concurrency confirmation D is the best.
Through Figure 5, 6 and 7, the computation tlrrghe configtiation D in GTX 650Ti

has better performance of 79.2% than that oft
5. Conclusion

To reduce the memory bandW|dt &dlsplay, the study of the frame
image compression is reqwred sy com algorithm is suitable in order to

prevent the degradation of the i uallt
In this paper, in order t vent the @aﬂon of the image quality, this paper
S

increases the memory b idth effj ing the shared memory of CUDA. Also,
various asynchronou r configu s which can overlap the kernel execution and
data transfer bet st and DA are implemented with the page-locked host
memory based o %ompre rithm [12].

Experim stlts showt e configuration D obtains the maximum 87.5 and 30.6
speedups 650 @GTSSO, respectively, comparing to Host CPU. Also, the
maximum réedeCtions o ompression time for GTX650Ti and GT330 are 54.1% and

30.3%, respectively various configurations.
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