
International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.12 (2016), pp.161-170

http://dx.doi.org/10.14257/ijmue.2016.11.12.15

ISSN: 1975-0080 IJMUE

Copyright ⓒ 2016 SERSC

Performance Comparison of Asynchronous Transfer

Configurations for UHD Game Image Compression with GPGPU

Youngsik Kim

Department of Game and Multimedia Engineering, Korea Polytechnic University

E-mail: kys@kpu.ac.kr

Abstract

Ultra high definition (UHD) game scenes have caused the memory bandwidth problem.

The lossless DPCM-GR based compression algorithm [12] using NVIDIA

CUDA(Compute Unified Device Architecture) like general purpose GPU (GPGPU)

computing relieves the bandwidth problem without sacrificing image quality, which

supports bit parallel pipelining. This paper increases the memory bandwidth efficiency

using the shared memory of CUDA based on the compression algorithm [12]. Also,

various asynchronous transfer configurations which can overlap the kernel execution and

data transfer between the Host and the CUDA device are implemented with the page-

locked host memory. Experimental results show that GPGPU CUDA computing obtains

the maximum 87.5 and 30.6 times speedups for GTX650Ti and GT330, respectively,

comparing to Host CPU. Also, the maximum reductions of the compression time for

GTX650Ti and GT330 are 54.1% and 30.3%, respectively, among various concurrency

transfer configurations.

Keywords: GPGPU (General Purpose GPU), NVIDIA CUDA (Compute Unified

Device Architecture), Lossless Compression, Asynchronous Transfer, DPCM-GR

(Differential Pulse Code Modulation – Golomb Rice), concurrency transfer

configurations

1. Introduction

In the latest computer games, the display resolution has been rapidly increasing from

HD(1920x1080) to UHD(4096x2160, 7680x4320) for various digital devices such as

large screen monitors, digital TVs, and smartphones. The huge memory bandwidth has

been needed to meet the UHD resolution of the game scenes on those platforms. The

game image compression has been studied to reduce the memory bandwidth for UHD

display. In order to prevent deterioration of image quality, in general, the lossless

compression is suitable for the compression of UHD game image.

Instead of the image quality degradation, the compression ratio of the lossless

compression algorithm is not fixed because of the variable-length compressed data. Since

the lossy compression algorithm has the fixed compression ratio, the memory access

pattern is simple and the bit parallel processing is easy. To apply lossy compressions,

however, there are constrains that must be visually lossless. Both the memory interface

and pit parallelism should be addressed in order to use the variable-length data by

applying lossless compressions. A lot of hardware architectures for the lossless

compression are studied in [1-6].

Many studies using NVIDIA CUDA [7] like GPGPU computing have been conducted

to make the large-scale processors inside in GPU performed in parallel [8-11]. In [8], to

compute the summed area table, the given memory bandwidth is efficiently used by

dividing the input data into a sub-image of a square where the parameters are spread and

by reducing the amount of global memory accesses by almost half. The optimization

technique was proposed to accelerate the color format conversion of the non-memory-

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.12 (2016)

162 Copyright ⓒ 2016 SERSC

aligned webcam video using CUDA in [9]. The memory for accelerating the generation of

the maximum-minimum octree using CUDA was proposed in [10]. Real-time

DXT(DirectX Texture) compression techniques was proposed by utilizing the CUDA

programming in [11]. However, since the DXT compression algorithm is lossy, the image

degradation cannot be prevented. In the previous work [12], the author proposed the

lossless compression of DPCM-GR (Differential Pulse Code Modulation – Golomb Rice)

by modifying the DDPCM-GR compression algorithm [4] which can support bit-parallel

processing, in order to resolve the memory bandwidth issue for the UHD (4096x2160)

game image.

In this paper, the CUDA-based lossless image compression technique for the UHD

game is proposed based on the DPCM-GR algorithm [12] which can prevent the image

degradation. For this, the memory efficiency is considered through the use of shared

memory of CUDA. For the performance optimization, also, various asynchronous transfer

configurations which can overlap the kernel execution and data transfer between Host and

CUDA are implemented with the page-locked host memory. Experimental results

evaluate the asynchronous transfer configurations for the UHD game image compression.

2. Related Works for Lossless Image Compression

HMD-ExpG (Hierarchical Minimum and Difference + Exponential Golomb) algorithm

[1] computes both the minimum value and its difference values with other pixels for 2x2,

4x4, 8x8 hierarchical blocks, respectively, for the prediction. Then the exponential

Golomb coding is performed for entropy coding. It has a 64-bit quantized table address to

enhance the compression ratio. The advantage is that it considers the random access and

the compression ratio of 2.1:1 is relatively high. But the shortcoming is that it has the

table overhead (6.1KB/frame) and the hardware latency for exponential Golomb coding,

12 cycles, is high. Furthermore, the method to obtain the minimum value for

hierarchically calculating the difference is difficult to operate at a high speed bit parallel

pipelines and the hardware implementation is difficult to support the burst access.

To reduce the decoding latency of HMD-ExpG algorithm [1], HMD-NBS (HMD +

Nonzero Bit Selection) algorithm [2] uses the same prediction method of HMD-ExpG

However, it uses the different NBS method for entropy coding. It divides the block having

the difference value into five groups and obtains the minimum number of bits to represent

the difference between the minimum value per each group. Then the starting position of

each difference value group can be seen in advance. The advantage of this approach is to

reduce the decoding cycles 3 cycles. Still, it is difficult to operate at a high speed pipeline

and having a bit parallel because of the table overhead in HMD-ExpG [1].

HACP-SBT (Hierarchical Average Copy Prediction + Significant Bit Truncation)

algorithm [3] uses five ways like horizontal average prediction, vertical average

prediction, horizontal direct prediction, vertical direct prediction, and four-pixel average

prediction for the prediction. And for the entropy coding, it uses SBT scheme similar to

the HMD-NBS algorithm [2] which includes the minimum number of bits for each group.

Since it has the high compression ratio of 2.56:1, the memory bandwidth reduction can be

61%. However, it cannot support the random access. Also, it is difficult to implement the

pipelined bit-parallel hardware because of the encoding cycle overhead and the complex

prediction.

DDPCM-GR algorithm (Differential Differential Pulse Code Modulation + Golomb-

Rice) [4] uses DDPCM [5-6] devised in ATI for the prediction and Golomb-Rice for

entropy coding. The advantage of this compression algorithm can support the fully

pipelined bit-parallel hardware structure using a simple prediction method. It provides the

two-cycle encoding/decoding in pipelined fashion. The compression ratio is 1.64:1 for the

8x8 block.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.12 (2016)

Copyright ⓒ 2016 SERSC 163

The DDPCM [5-6] devised in ATI is for the Z (depth) data compression in 3D graphics.

It is assumed that the Z depth value is linearly interpolated in DDPCM. The depth value is

distinguished as -1, 0, 1, and an escape value after DDPCM. Then it performs entropy

coding by mapping 0, 1, -1, and an escape value into 00, 01, 10, and 11, respectively. But,

since DDPCM is originally devised to compress the Z data, a simpler DPCM (differential

pulse code modulation) can be applied without the degradation of the compression ratio

for the Game scene color pixels. In the previous work [12], the author proposed the

lossless compression of DPCM-GR by modifying the DDPCM-GR compression

algorithm [4] to support the bit-parallel processing.

3. DPCM-GR Lossless Image Compression

1. Divide Block

p0 dp1 dp2 dp3

dp4 dp5 dp6 dp7

dp8 dp9 dp10 dp11

dp12 dp13 dp14 dp15

2. DPCM

3. Parallel GR Encoding

4. GR Packing

4096x2160 Image

. . .4x4
block

4x4
block

4x4
block

8 0

9-k bits k bits

quotient remainder

unary code 1110

3

Seed
(8)

L
(7)

Sign
(15)

Remainder
(30)

Unary
(15~68))

Figure 1. DPCM-GR Lossless Compression Algorithm [12]

This section describes the DPCM-GR lossless compression algorithm [12] by

modifying the DDPCM-GR algorithm [4] to support the bit-parallel processing. As in

Figure 1, the full lossless compression algorithms for the UHD game image consists of

major four steps like (1) dividing the original image data into 4 x 4 blocks, (2) DPCM

calculated for the data block, (3) Golomb-Rice parallel encoding, and (4) GR Packing. To

calculate DPCM, one seed data and fifteen difference data are derived for each data block.

By applying the GR bit parallel algorithm to the fifteen difference data, overall, it derives

a lossless data compression.

The seed data is the uncompressed original data. The DPCM difference data is divided

by 2
k
 for GR encoding. In this paper, the GR parameter, k, is assumed to be 2. Then, the

remainder portion is a 15 x 2 = 30 bits as a fixed bit number. And fifteen quotients are

represented in unary code. For example, the quotient value of 3 can be coded as 1110 (0 is

a separate bit). The separation bit positions (ti) can be computed at the same time in bit-

parallel in [Eq.1].

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.12 (2016)

164 Copyright ⓒ 2016 SERSC

)151(,1
1




iiqt
i

j

ji

 [Eq. 1]

For example, when q1=1, q2=3, and q3=5, the unary code is 101110111110 and

separation bits are t1=q1=1, t2=q1+q2+1=5, and t3=q1+q2+q3+2=11. If the length of

compressed bits is longer than that of the original bits, GR packing chooses the original

one. Otherwise, in Figure 1, each bit fields for the seed data, the length, the remainder,

and the unary code are 8 bit, 7 bit, 30 bit, and 15~68 bit wide, respectively.

4. Asynchronous Compression Using GPGPU CUDA

This section optimally implements the lossy DPCM-GR compression algorithm [12]

using GPGPU CUDA computing. First, the original game image of UHD(4096x2160)

should be transferred to the CUDA device memory from the Host memory.

CUDA thread mapping for UHD(4096x2160) Image

CUDA Block
(threadIdx.x, threadIdx.y)

Block
(0,0)

Block
(0,1)

Block
(0,2)

Block
(1,0)

Block
(1,1)

Block
(1,2)

Block
(2,0)

Block
(2,1)

Block
(2,2)

CUDA Grid
(blockIdx.x, blockIdx.y)

CUDA Thread
(4x4 DPCM sub-image)

Figure 2. CUDA Grid, Block, and Thread for DPCM-GR Compression [12]

In Figure 2, a single UHD game image is divided into 4x4 sub-images which are

handled by each CUDA thread for DPCM computation. The grid consists of CUDA

blocks which have their own block identifier (blockIdx.x, blockIdx.y). Each block also

consists of CUDA threads which have their own thread identifier (threadIdx.x,

threadIdx.y). The number of available CUDA threads varies as the CUDA environment

provided by the graphics hardware. After all CUDA threads simultaneously compute

DPCM for 4x4 sub-images, they perform GR encoding, as shown in (2) DPCM and (3)

parallel GR encoding of Figure 1. Finally, each CUDA thread performs (4) GR packing of

Figure 1. All GR packed data of its 4x4 sub-image for whole UHD image is going to be

transferred to Host system.

There are various types of memory inside CUDA system. The largest but slow memory

is the Global device memory. The data can be transmitted and received between Host and

CUDA through it. The Local memory is directly handled by GPU, which is a small

portion allocated in the Global memory. There are also areas for constants and texture

data in the Global memory. The fastest memories are the shared memory and register. The

access speed of the shared memory is about 100 times faster than that of the global

memory which is made of DRAM.

In this paper, in order to utilize the fast access speed of the shared memory, once each

CUDA thread loads 4x4 sub-image on the shared memory, and then it performs its DPCM

computation and GR encoding. If CUDA Compute Capability compiles the DPCM-GR

kernel of this paper with its compile option of “-ptxas-options-v”, we can obtain the

shared memory and register usage in Table 1. It is reasonable that the number of register

per thread is 14 and the usage of shared memory per block is 124bytes.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.12 (2016)

Copyright ⓒ 2016 SERSC 165

Table 1. Shared Memory and Register Usage

Memory Type Usage

Shared Memory per Block 124 bytes

Register per Thread 14 registers

In order to optimize the performance, the CUDA compression kernel can be

overlapped by the data transmission between Host and CUDA using asynchronous

function processing. The page-locked (pinned) hosts memory should be used for the

asynchronous data transfer. The page-locked memory is faster than the general Host

memory. Also the CUDA stream can make both the kernel processing and the

asynchronous transfer overlapped in pipelined fashion.

In this paper, the asynchronous function overlaps the CUDA DPCM-GR kernel

execution with the transfers of both the original image from Host to CUDA and the

compressed data from CUDA to Host. In Figure 3, four CUDA configurations for the

asynchronous transfer are shown. The configuration A is for the serial which serially

performs all data transfer and kernel executions. The configuration B (two-way

concurrency 1) is that the original image data transfer from Host to CUDA is serial and

the kernel execution and the compressed data transfer from CUDA to Host is overlapped.

In the configuration C (two-way concurrency 2), that the original image data transfer from

Host to CUDA and the kernel execution is overlapped and the compressed data transfer

from CUDA to Host is serial. Finally in the configuration D (three-way concurrency), the

original image data transfer from Host to CUDA, the compression kernel execution, and

the compressed data transfer from CUDA to Host are asynchronously overlapped in

pipelined fashion.

This paper evaluates the performance of four concurrency

configurations through experiments.

Host-to-CUDA transfer CUDA Kernel<<< >>> CUDA-to-Host transfer

A. Serial (baseline performance)

Host-to-CUDA transfer K1 CH1

B. Two-way concurrency1 (up to two times faster in pipelined fashion)

K2 CH2
K3 CH3

K4 CH4

HC1 K1 CH1

D. Three-way concurrency (up to three times faster in pipelined fashion)

K2 CH2
K3 CH3

K4 CH4

HC2
HC3

HC4

HC1 K1

C. Two-way concurrency2 (up to two times faster in pipelined fashion)

K2
K3

K4

HC2
HC3

HC4 CUDA-to-Host transfer

Figure 3. Four Concurrency Configurations According to Asynchronous
Transfers [12]

5. Performance Evaluation

In this Section, to evaluate the performance of four concurrency configurations about

the CUDA kernel execution and the asynchronous data transfer, two systems including

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.12 (2016)

166 Copyright ⓒ 2016 SERSC

GPGPU CUDA systems such as NIVIA GeForce GTX G650Ti and GT330M are

prepared as shown in Table 2.

For the experiments, the system I of Table 2 is about Intel(R) Core(TM) i7-4770 CPU

@ 3.40GHz 3.40GHz with 8GB RAM and NVIDIA GeForce GTX650Ti (Compute

Capability 3.0, 768 Cores, 1.03GHz, 2048MB Global Memory). Also, the system II of

Table 2 is about Intel(R) Core(TM) i5 CPU M520 @ 2.40GHz 2.40GHz with 8GB RAM

and NVIDIA GeForce GT330M (Compute Capability 1.2, 48 Cores, 1.1GHz, 256MB

Global Memory).

Under the asynchronous transfer environment using the page-locked Host memory, the

memory bandwidths of the Host-to-CUDA transfer and the CUDA-to-Host transfer are

good up to 11847.8MB/s and 12019.2MB/s, respectively.

This paper uses six benchmark UHD (4096x2160) game images for experiments in

Figure 4. To compute the computation time reduction, the Host CPU execution times for

DPCM-GR compression for six benchmark images of Figure 4 are measured according to

System I and System II as in Table 3. The average execution CPU times of System I and

System II are 1019.45ms and 1686.76ms, respectively. The average compression ratio is

0.68 for six benchmark images.

Table 2. GPGPU CUDA Computing Environment

System I System II

Host CPU

Intel(R) Core(TM) i7-

4770 CPU @ 3.40GHz

3.40GHz

Intel(R) Core(TM) i5

CPU M520 @ 2.40GHz

2.40GHz

CPU RAM 8GB RAM 8GM

GPGPU CUDA System
NVIDIA GeForce GTX

650 Ti

NVIDIA GeForce

GT330M

Driver version 7.5 6.5

CUDA Capability 3.0 1.2

Total Global Memory 2048MB 256MB

Cores

768 Cores =

4 Multiprocessors x

192 CUDA cores

48 Cores =

6 Multiprocessors x

8 CUDA cores

GPU Clock rate 1.03 GHz 1.1 GHz

Shared Memory/block 48KB 16KB

Warp size 32 32

Max threads per block 512 512

H2C Pinned memory

bandwidth
11847.8 MB/s 12170.3 MB/s

C2H Pinned memory

bandwidth
12019.2 MB/s 12228.3 MB/s

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.12 (2016)

Copyright ⓒ 2016 SERSC 167

Image 1 [13] Image 2 [14] Image 3 [15]

Image 4 [16] Image 5 [17] Image 6 [18]

Figure 4. Benchmark UHD (4096x2160 Resolution) Game Images

Table 3. Host CPU Times and Compression Ratio for Benchmark Images

Host CPU Time (ms)

Compression Ratio

System I System II

Image 1 1031.56 1699.39 0.621

Image 2 1039.35 1702.93 0.743

Image 3 1023.01 1704.84 0.652

Image 4 1038.21 1697.37 0.847

Image 5 1002.79 1666.89 0.615

Image 6 981.77 1649.12 0.601

average 1019.45 1686.76 0.680

Figure 5 presents the compression times according to four concurrency configurations

(A, B, C, and D) of Figure 3 for two Systems I and II in Table 2 under the GPGPU CUDA

computing environment. In addition, four types of the original image slices like 2, 4, 8,

and 16 are applied for the asynchronous pipelined processing. The performance

differences among the execution times for six benchmark images are negligible. It is also

same to those of four image slices. The reason is that the preparation overhead time

between the kernel execution and the data transfer does much more important role.

However, Figure 5 shows the clear performance differences among four concurrency

configurations in two Systems I and II. The configuration D (three-way concurrency) has

the best performance which reduce the compression time up to 54.1% and 30.3%

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.12 (2016)

168 Copyright ⓒ 2016 SERSC

Figure 5. GPGPU CUDA Time According to Graphics System, the Number of
Image Slices, and Concurrency Configurations

Figure 6. SpeedUp (CPU Time / GPGPU CUDA Time) According to Graphics
System, the Number of Image Slices, and Concurrency Configurations

Holliday

Figure 7. Performance Gain (Time Gain% and SpeedUp Gain%) According
to Graphics System and Concurrency Configurations

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.12 (2016)

Copyright ⓒ 2016 SERSC 169

Than the concurrency configuration A (Serial) for System I and II with GTX650Ti and

GT330, respectively. The configuration B (two-way concurrency 1) has the performance

gain up to 44.3% and 9.3% about the compression time than the concurrency

configuration A (Serial) for System I and II with GTX650Ti and GT330, respectively.

Also, the configuration C (two-way concurrency 2) reduce the compression time up to

23.8% and 7.4% than the concurrency configuration A (Serial) for System I and II with

GTX650Ti and GT330, respectively. The reason where the performance of the

configuration C is not better than that of the configuration B is that the compressed data is

smaller and more irregular than the original image.

Figure 6 shows the speed ups of the GPCPU CUDA computation time than the Host

computation time. For two Systems I and II, four concurrency configurations like A, B, C,

and D have the speed ups of 40.2, 72.1, 44.3, and 87.5 times in the GTX 650 Ti than the

Host computation time. For GT330M, four concurrency configurations like A, B, C, and

D have the speed ups of 21.3, 28.0, 23.0, and 30.6 times than the Host computation time.

Overall the configuration D is best.

Figure 7 explains the time gain and the speed up gain for four concurrency

configurations according to two Systems I and II. The speed ups of A than B, C, and D in

GTX 650Ti are 79.5%, 10.3%, and 117.8%, respectively. Also, the speed ups of A than

others in GT330M are 31.3%, 7.9%, and 43.4%, respectively. Overall the performance of

the concurrency confirmation D is the best.

Through Figure 5, 6 and 7, the computation time of the configuration D in GTX 650Ti

has better performance of 79.2% than that of the GT330M.

5. Conclusion

To reduce the memory bandwidth for the UHD game display, the study of the frame

image compression is required. The lossy compression algorithm is suitable in order to

prevent the degradation of the image quality.

In this paper, in order to prevent the degradation of the image quality, this paper

increases the memory bandwidth efficiency using the shared memory of CUDA. Also,

various asynchronous transfer configurations which can overlap the kernel execution and

data transfer between host and CUDA are implemented with the page-locked host

memory based on the compression algorithm [12].

Experimental results show that the configuration D obtains the maximum 87.5 and 30.6

speedups for GTX650Ti and GT330, respectively, comparing to Host CPU. Also, the

maximum reductions of the compression time for GTX650Ti and GT330 are 54.1% and

30.3%, respectively, among various configurations.

References

[1] S. Lee, M. Chung, S. Park, and C. Kyung, “Lossless frame memory recompression for video codec

preserving random accessibility of coding unit”, IEEE Trans. Consumer Electro., vol. 55, no. 4, (2009),

pp. 2105-2113.

[2] S. Lee, N. Eum, M. Chung and C. Kyung, “Low Latency Variable Length Coding Scheme For Frame

Memory Recompression”, 2010 IEEE International Conference on Multimedia and Expo (ICME), IEEE,

(2010), pp.232-237.

[3] J. Kim and C. M. Kyung, “A lossless embedded compression using significant bit truncation for HD

video coding”, IEEE Transaction on Circuit and System for Video Technology, vol. 20, no. 7, (2010),

pp. 848-860.

[4] H. S. Kim, J. Lee, H. Kim, S. Kang and W. C. Park, “A Lossless Color Image Compression Architecture

Using a Parallel Golomb-Rice Hardware Codec”, IEEE Transactions on Circuits and Systems for Video

Technology, vol. 21, no. 11, (2011), pp. 1581-1587.

[5] S. Morein, “ATI Radeon HyperZ Technology”, ACM/Eurographics Symposium on Graphics Hardware,

(2000).

[6] J. Deroo, S. Morein, B. Favera and M. Wright, “Method and Apparatus for Compressing Parameter

Values for Pixels in a Display Frame”, In US Patent 6,476,811, (2002).

[7] “NVIDIA CUDA”, http://developer.nvidia.com/object/cuda.html.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.12 (2016)

170 Copyright ⓒ 2016 SERSC

[8] S. W. Ha, M. H. Choi, T. J. Jun, J. W. Kim, H. R. Byun and T. D. Han, “Bandwidth Efficient Summed

Area Table Generation for CUDA”, Journal of Korea Game Society, vol. 12, no. 5, (2012), pp. 67-78.

[9] J. W. Kim, Y. Jung, J. Park, Y. J. Park and T. D. Han, “Optimization of Color Format Conversion of

WebCam Images Using the CUDA”, Journal of Korea Game Society, vol. 11, no. 1, (2011), pp. 147-

157.

[10] J. H. Lim and B. S. Shin, “Min-Max Octree Generation Using CUDA”, Journal of Korea Game Society,

vol. 9, no. 6, (2009), pp. 191-196.

[11] N. L. Kim and J. W. Kim, “GPU-based Low-latency DXT Compression and Transport for 4K Ultra-

high-definition Media Sharing”, KIISE Transactions on Computing Practices, vol. 18, no. 8, (2012), pp.

573-581.

[12] Y. Kim, “CUDA based Lossless Asynchronous Compression of Ultra High Definition Game Scenes

using DPCM-GR”, Journal of Korea Game Society, vol. 14, no. 6, (2014), pp. 59-68.

[13] Image 1, Asura’s Wrath from http://www.giantbomb.com/

[14] Image 2, Tom Clancy’s the Division from http://www.dlh.net/

[15] Image 3, Tom Clancy’s the Division from http://www.dlh.net/

[16] Image 4, Devil May Cry 5 from http://-www.gamehdwall.com/

[17] Image 5, ForgeMaster from http://www.over3000.net/

[18] Image 6, China Lake Grenade Launcher Pop Gun from http://www.polycount.com/

Authors

Youngsik Kim, received the B.S., M.S., and Ph.D degree in Dept.

Computer Science from the Yonsei University, Korea, in 1993, 1995,

and 1999 respectively. He had worked for System LSI, Samsung

Electronics Co. Ltd from Aug. 1999 to Feb. 2005 as a senior engineer.

Since March 2005 he has been working for Dept. of Game &

Multimedia Engineering in Korea Polytechnic University. His

research interests are in 3D Graphics and Multimedia Architectures,

Game Programming, and SOC designs.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

