
International Journal of Multimedia and Ubiquitous Engineering 

Vol.10, No.6 (2015), pp.141-150 

http://dx.doi.org/10.14257/ijmue.2015.10.6.14 

 

 

ISSN: 1975-0080 IJMUE  

Copyright ⓒ 2015 SERSC 

Fuzzy Cube Granule Structure for Image Segmentation 
 

 

Hongbing Liu, Chunhua Liu, Chang-an Wu and Jun Huang 

School of Computer and Information Technology, Xinyang Normal University 

Xinyang 464000, Henan Province, China 

liuhbing@126.com 

Abstract 

Fuzzy Cube Granule Structure (FCGS) for image segmentation is proposed in the 

paper. Firstly, the atomic cube granule is represented as the vector including the YCbCr 

values of pixel of color image and radii 0. Secondly, the join operation between two cube 

granules is designed to obtain the larger cube granule. Thirdly, the FCGS is formed by 

the fuzzy inclusion measure defined by join operation and the user-defined granularity 

threshold . Global Consistency Error (GCE), Variation of Information (VI), Rand Index 

(RI) are used to evaluate the segmentations. Images selected from BSD300 are used to 

verify the feasibility of FCGS. 

 

Keywords: Cube granule, join operation, fuzzy cube granule structure, image 

segmentation 

 

1. Introduction 

Granular computing (GrC) concerns the processing of complex information entities 

called information granules, which arise in the process of data abstraction and derivation 

of knowledge from information or data [1,2]. In the philosophical sense, granular 

computing can describe a way of thinking that relies on the human ability to recognize the 

real world under various levels of granularity in order to abstract and consider only those 

things that serve a specific interest and to switch among different granularities. By 

focusing on different levels of granularity, one can obtain different levels of knowledge, 

as well as a greater understanding of the inherent knowledge structure. Granular 

computing is thus essential in human problem solving and hence has a very significant 

impact on the design and implementation of intelligent systems, such as classification 

problems [3-5]. 

In computer vision, image segmentation is the process of partitioning a digital image 

into multiple segments. The goal of segmentation is to simplify and/or change the 

representation of an image into something that is more meaningful and easier to analyze 

[6]. Image segmentation is typically used to locate objects and boundaries in images. 

More precisely, image segmentation is the process of assigning a label to every pixel in an 

image such that pixels with the same label share certain visual characteristics. The result 

of image segmentation is a set of segments that collectively cover the entire image, or a 

set of contours extracted from the image. Each of the pixels in a region is similar with 

respect to some characteristic or computed property, such as color, intensity, or texture. 

Adjacent regions are significantly different with respect to the same characteristic [6]. 

When applied to a stack of images, the resulting contours after image segmentation can be 

used to create 3D reconstructions with the help of interpolation algorithms. The practical 

applications of image segmentation included content-based image retrieval [7], machine 

vision [8], medical imaging [9], and object detection [10]. 

 The present work forms the fuzzy cube granule structure for image segmentation, 

which is a clustering method. For the image I, we convert the RGB values into the YCbCr 
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color space since humans are more sensitive to illuminance changes. Firstly, YCbCr 

values of pixel point are used to represent the atomic cube granule which is inseparable. 

Secondly, fuzzy inclusion measure is defined by the join cube granule between two cube 

granules. Thirdly, the user-defined threshold of granularity is used to control the join 

process, and the data belonging to the same cube granule is composed of the cluster. 

 The rest of this paper is presented as follows: Fuzzy cube granule structure is 

described in Section 2. Section 3 demonstrates the comparative experimental results on 

image segmentation problems. Section 4 summarizes the contribution of our work. 

 

2. Fuzzy Cube Granule Structures 

For the data set S={xi|i=1,2,...,n} of image segmentation problems in 3-dimensional 

space induced by the YCbCr values of pixels, we construct fuzzy cube granule structure 

in terms of the following steps. Firstly, a granule is represented as a cube, and the size of 

granule is measured by the granularity induced by the ridge of cube. Secondly, operations 

between two cube granules are designed to obtain the cube granule with the larger 

granularity, and the fuzzy inclusion measure between two cube granules is induced by 

granule and the operated granule. Thirdly, the fuzzy cube granule structure is formed. 
 

3.1 Representation of Cube Granule 

In reality, the shapes of granules are irregular. In order to study granule, the shapes are 

represented as the regular forms. In 3-dimensional space induced by YCbCr values of 

pixel, the granule is represented as the cube, and the granularity of granule is the half of 

ridge. So the cube granule is represented as follows. 

G=(C,R)                                                        (1) 

Where C is the center of cube, and R is the half of ridge. For the image I, the YCbCr 

values of pixel are represented as a atomic cube granule by formula (1). 

 

3.2 Operations Between Two Granules 

The join process is the key to obtain the larger granules compared with atomic granules. 

For two cube granules G1=(C1, R1) and G2=(C2, R2) in 3-dimensional space, the central 

vector C of G and the granularity R of the join granule G=G1G2=(C, R) are computed by 

algorithm1. 

 

Algorithm1. computing C and R of join granule G between G1 and G2 

Input: G1=(C1,R1) and G2=(C2,R2) 

Output: G=(C,R) 

if C1=C2 

    if R1>=R2 

            C=C1 

            R=R1 

    else 

        C=C2 

            R=R2 

    end 

else 

    C12=(C2-C1)/d(C1,C2) 

    C21=(C2-C1)/d(C2,C1) 

    P1 = C1-C12R1 

    Q1 = C2-R2C21 

    if R1>=R2 

        if d(C1,C2)<=R1-R2 
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            C=C1 

                  R=R1 

        else 

            C=(P1+Q1)/2 

            R=d(P1,Q1)/2 

        end 

    else 

        if d(C1,C2)<=R2-R1 

            C=C2 

                  R=R2 

        else 

            C=(P1+Q1)/2 

            R=d(P1,Q1)/2 

        end 

    end 

end
 

We explain the join process by two squares in 2-dimensional space. For square granule 

G1 = [0.2 0.15 0.1] and square granule G2=[0.08 0.25 0.06], the join square granule is 

G=[ 0.16, 0.1833, 0.14] shown in Figure 1. 

 

 

Figure 1. The Join Ssquare Granule of Two Square Granules in 2-
Dimensional Space 

From Figure1, G1G1G2 and G2G1G2. Namely, the operations between granule G1 

and granule G2 are corresponding to the inclusion relation between granule G1 and G2.  

         G1G2G1G2=G2, G1G2=G1                                              (2) 

The inclusion measure between two granules is induced by the operations between two 

granules. 

 

3.3 Fuzzy Inclusion Measure 

As a subset of data set S, the inclusion relation between two cube granules is fuzzy. For 

example, G1=[0.1,0.2,0.1] and G2=[0.32,0.2,0.1] have the same granularity and different 

central vector, and G=[0.4,0.3,0.06]. The inclusion measure between G1 and G are 

different from the inclusion measure between G2 and G, especially there is overlap 

between G2 and G. The fuzzy inclusion measure is used to measure the fuzzy inclusion 

relation. In Figure 2, one hand is the difference of the join hypercube granule 

G1∨G=[0.23, 0.2433, 0.23] and the join hypercube granule G2∨G=[0.344, 0.23, 0.13], 
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the other hand is the difference of the meet hypercube granule G1∧G= and the meet 

hypercube granule G2∧G=[0.367, 0.27, 0.03]. The fuzzy inclusion measure between G2 

and G is greater than the fuzzy inclusion measure between G1 and G. 

 

 

Figure 2. The Different Inclusion Measure between Two Granules 

The join granule and the meet granule are used to measure the fuzzy inclusion relation. 

The granularity R is used to define the fuzzy inclusion measure. 

        K(G1,G)=v(G)/v(G1∨G)                                              (3) 

Where v (G) is the positive valuation function defined by V G kaburlasos, which can 

be the linear function or nonlinear function [3-5].  

 

3.4 Fuzzy Cube Granule Structure 

In recent years, lattice computing is used in clustering problems [11-13]. For a data set 

S={xi|i=1,2,…,n}, every datum xi is represented as an atomic cube granule which is 

indivisible. The granule set (GS) is induced by the representation method of granule, the 

join operation is defined on granule set GS, and used to compound the fuzzy inclusion 

measure (2). So the FCGS <GS, K (.,.)> is formed by the granule set GS induced by 

representation of granule, and fuzzy inclusion measure K (.,.) between two granules 

induced by operation between two granules. 

Suppose the data set S={g1-g5}. The clustering process can be described as the 

following tree structure shown in Figure.3, leafs denote the atomic cube granules, root 

denotes GS including its child nodes G1, G2, and g3. G1 is induced by join operation of 

child nodes g1 and g2, G2 is the join cube granule of g4 and g5, g3 is the atomic cube 

granule. The whole process of obtaining GS is the bottle up process. 

 

GS

G1 G2

g1 g2 g4 g5

g3

 

Figure 3. The Clustering Process of Data Set Including 5 Samples 

The clustering algorithm of fuzzy cube granule structure is described as algorithm2. 
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Algorithm2. Clustering process 

Input: Data set S,  threshold  of granularity 

Output: Granule set GS 

S1. initialize the granule set GS= 

S2. i=1 

S3. for the ith sample xi in S, form the corresponding atomic cube granule 

Gj 

S4. j=1 

S5. compute the fuzzy inclusion measure  Kij between the atomic cube 

granule Gi and the jth granule Gj in GS 

S6. j=j+1 

S7. find the maximal fuzzy inclusion measure Kim 

S8. if the granularity of the join of Gj and Gm is less than or equal to , the 

granule Gm is replace by the join, otherwise Gj is the new member of GS. 

S9. remove xj until S is empty. 

 

3. Evaluation of Segmentation 

For the segmentations S={S1,S2,...,Sn} and S’={S’1,S’2,...,S’m} of original color image I 

with n1 rows and n2 columns, and N=|S1|+|S2|+...+|Sn|=|S’1|+|S’2|+...+|S’m|, we evaluate the 

segmentation by the following aspects. 

 

3.1. Global Consistency Error 

D. Martin proposed several error measures to quantify the consistency between image 

segmentations of differing granularity [14,15]. Let S and S’ be two segmentations of an 

image I=(x1, x2,...,xN) consisting of N pixels. For a given pixel xi, consider the classes 

(segments) that contain xi in S and S’. We denote these sets of pixels by C (S,xi) and C 

(S’,xi), respectively. Local Refinement Error (LRE) is then defined at point xi as: 

      LRE(S,S’,xi)=|C(S,xi)−C(S’,xi)|/|C(S,xi)| 

Where C (S,xi)−C (S’,xi) denotes the set differencing operator between sets C (S,xi) and 

C (S’,xi). This error measure is not symmetric and encodes a measure of refinement in one 

direction only. There are two natural ways to combine the LRE at each point into a 

measure for the entire image. Global Consistency Error (GCE) forces all local refinements 

to be in the same direction and is defined as: 

      GCE(S,S’)=min{LRE(S,S’,x1)+…+LRE(S,S’,xN), LRE(S’,S,x1)+…+ LRE(S,S’,xN)}/N 

 

3.2. Variation of Information 

Work in [16] computes a measure of information content in each of the segmentations. 

The proposed measure, termed the Variation of Information (VI), is a metric and is related 

to the conditional entropies between the class label distribution of the segmentations. The 

measure has several promising properties [16] but its potential for evaluating results on 

natural images where there is more than one ground-truth clustering is unclear. The VI is 

computed by the following steps. Firstly, computing the entropies En(S) and En(S’) 

associated with segmentation S and S’. 

      En(S)=−(P(1)log2P(1)+P(2)log2P(2)+...+P(n)log2P(n)) 

Where P(i) =|Si|/N 

      En(S’)=−(P’(1)log2P’(1)+P’(2)log2P’(2)+...+P’(m)log2P’(m)) 

Where P’(i)=|S’i|/N, log20=0. 

Secondly, computing the mutual information between S and S’ 
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Thirdly, computing the VI 
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      VI(S,S’)=En(S)+En(S’)−2I(S,S’) 

 

3.3. Rand Index 

Rand Index (RI) was motivated by standard classification problems in which the result 

of a classification scheme has to be compared to a correct classification [17]. The most 

common performance measure for this problem calculates the fraction of correctly 

classified (respectively misclassified) elements to all elements. For Rand, comparing two 

clusters was just a natural extension of this problem which has a corresponding extension 

of the performance measure: instead of counting single elements he counts correctly 

classified pairs of elements. Thus, RI is defined by: 

      RI(S,S’)=2(N11+N00)/(N(N−1)) 

Where N11 denotes the numbers of pairs that are in the same cluster under S and S’, N00 

denotes the number of pairs that are in different clusters under S and S’. RI depends on 

both the number of clusters and the number of elements, and ranges from 0 to 1. S and S’ 

are identical when RI equals to 1. 

 

4. Experiments 

We evaluated the effectiveness of our algorithms induced by the FCGS for image 

segmentation selected from BSD300 (http://www.eecs. berkeley. edu/Research /Projects 

/CS/vision /bsds/), with an Intel Core i5 PC with 3.2 GHz CPU and 8 GB memory, 

running Microsoft Win7 and Matlab R2008a. 

For the color image 24063 in BSD300, the parameter of granularity are set from 0.5 to 

0.2 with the step 0.02, our purpose is to find the parameter  who makes the minimal 

GCE and VI, and the maximal RI. GCE, VI, and RI of image 24063 by GrCC are listed in 

Table 1. From the Table, we can see GrCC achieved the minimal GCE (0.0506), the 

minimal VI (0.7763), and the maximal RI (0.9115). The relationships between parameter 

and  are shown in Figure.4, from the Figure, we can see GCE and VI reached the lowest 

points 0.0506 and 0.7763, and RI reached the highest point 0.9115 when parameter 

=0.22. Figure.5 includes the original image and the boundary of human segmentation. 

 

 

Figure 4. The Relationships between Parameter  and GCE, VI, and RI 
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Table 1. The Performance of Segmentations for Image 24063 in 
BSD300 

 #cls GCE VI RI 

    0.5000 

    0.4800 

    0.4600 

    0.4400 

    0.4200 

    0.4000 

    0.3800 

    0.3600 

    0.3400 

    0.3200 

    0.3000 

    0.2800 

    0.2600 

    0.2400 

    0.2200 

    0.2000 

     2 

     2 

     2 

     2 

     2 

     2 

     2 

     3 

     3 

     3 

     3 

     3 

     3 

     3 

     3 

     4 

    0.0568 

    0.0739 

    0.0941 

    0.1169 

    0.1332 

    0.1475 

    0.1679 

    0.2358 

    0.2663 

    0.2322 

    0.0973 

    0.0632 

    0.0570 

    0.0531 

    0.0506 

    0.1187 

    1.5798 

    1.6174 

    1.6604 

    1.7019 

    1.7132 

    1.7264 

    1.7432 

    1.8050 

    1.7627 

    1.5562 

    1.0175 

    0.8473 

    0.8133 

    0.7918 

    0.7763 

    0.9859 

   0.5448 

    0.5541 

    0.5623 

    0.5709 

    0.5846 

    0.5916 

    0.5996 

    0.6173 

    0.6604 

    0.7366 

    0.8708 

    0.9002 

    0.9056 

    0.9089 

    0.9115 

    0.9065 

 

Figure 5. Image and its Segmentation Image, Boundary by Human, and 

Boundary by FCGS (=0.22). (a) is the Original Image, (b) the Segmentation 
Image, (c) Boundary by Human, (d) Boundary by FCGS 
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Figure 6. Image (118035) and its Segmentation Image, Boundary by Human, 

and Boundary by FCGS (=0.28). (a) is the Original Image, (b) the 
Segmentation Image, (c) Boundary by Human, (d) Boundary by FCGS 

 

 

Figure 7. Image (3069) and its Segmentation Image, Boundary by Human, 

and Boundary by FCGS (=0.34). (a) is the Original Image, (b) the 
Segmentation Image, (c) Boundary by Human, (d) Boundary by FCGS 

 

5. Conclusion 

The representation of granule, the join operation between two granules, the fuzzy 

inclusion measures between two granules is discussed in details. The fuzzy granule 

algebraic structure is induced by the granule set, operations between two granules, and 

fuzzy inclusion measure between two granules, and used to form the granular computing 

clustering algorithm for image segmentation. The experimental results showed the 

feasibility of FCGS for image segmentation. 
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