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Abstract 

Hadoop HDFS is an open source project from Apache Software Foundation for 

scalable, distributed computing and data storage. HDFS has become a critical component 

in today's cloud computing environment and a wide range of applications built on top of 

it. However, the initial design of HDFS has introduced a single-point-of-failure, since 

HDFS contains only one active namenode, if this namenode experiences software or 

hardware failures, the whole HDFS cluster is unusable, this is a reason why people are 

reluctant to deploy HDFS for an application whose requirement is high availability. In 

this paper, we present a solution to enable the high availability for HDFS's namenode 

through efficient metadata replication. Our solution has 3 major advantages than existing 

ones: We utilize multiple active namenodes, instead of one, to build a cluster to serve 

requests of metadata simultaneously; We implement a pub/sub system to handle the 

metadata replication process across these active namonodes efficiently; We also propose 

a novel replication algorithm to deal with the network delay when the namonodes are 

deployed in different areas. Based on the solution we build a prototype called NCluster 

and integrate it with HDFS. We evaluate NCluster to exhibit its feasibility and 

effectiveness. The experimental results show that our solution performs well with low 

replication cost, good throughput and scalability. 
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1. Introduction 

Apache Hadoop[1] is an open source Java project governed by the Apache Software 

Foundation(ASF), and is being built and used by a global community of contributors. 

Hadoop is a reliable, scalable, distributed computing platform, clients usually use simple 

programming model to run distributed computing tasks like MapReduce[2] over a 

massive amount of data sets on Hadoop platform. It is designed to scale up from single 

server to thousands of machines, each offering local computation and storage. There are 

many sub open source projects belongs to Hadoop, including HBASE[3], Zookeeper[4] , 

.etc. Maybe the most famous one of these projects is HDFS[5], a distributed file system 

can be scalable to  support thousands of commodity machines, HDFS is the primary 

distributed storage system used by Hadoop applications . Industry leading companies, 

such as Facebook, Twitter and YAHOO!, use HDFS as their basic distributed storage 

environment[6]. 

The HDFS cluster consists of hundreds even thousands of machines, in this paper we 

call these machines nodes. The design of HDFS is fully inspired by Google File System 

(GFS)[7]. Both of HDFS and GFS are master/slave architecture. Each HDFS cluster has 

one master node, called namenode, which manages the metadata information, including 

distributed file system namespace, file descriptions, file-data block mappings, data block 

allocations, access regulations and so on. HDFS clients should talk to the namenode 
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firstly whenever they wish to access a file in HDFS. Note that there could be more than 

one namenodes in each HDFS, but only one of them is active, here active means it can 

serve requests from HDFS clients, in contrast to inactive namenode, which merely play a 

role of warm or cold backup. Within HDFS cluster, in addition to namenode, there are a 

huge number of datanodes, which are responsible for storing the actual data blocks. 

Rather than rely on hardware to deliver high-availability, the HDFS itself is designed to 

detect and handle failures at the application layer, it uses multiple data replicas across the 

cluster. In default setting, every data block has 3 replicas, which resident in 3 different 

datanodes respectively, replicas are updated synchronously in order to provide strong 

consistency. Even though each of datanodes may be prone to failures, but the data loss of 

one or few datanodes does not impact the HDFS cluster at all, HDFS clients could fetch 

the data from other datanodes with same replica. 

Unfortunately, HDFS has quite a little high availability support on namenode yet, 

existing solutions are far from satisfaction. One  major difference between HDFS and 

GFS is that, the  initial design  of  HDFS  has  only one active metadata server as 

mentioned earlier, while GFS has 3 or 5 for the reason of high availability, GFS uses 

Chubby Lock[8] to maintain metadata files across  different metadata servers.  

Furthermore, in HDFS any time when the namenode meets unexpected errors or 

system failures, the whole HDFS cluster is totally out of work because the metadata is 

inaccessible. Apparently this is a single point of failure and is one of the reasons why 

people are reluctant to deploy HDFS for an application whose uptime requirement is 

24x7. Namenode may fail to response request due to many reasons, from unexpected 

power off or hardware crash, to software upgrades or malicious invasions. 

At present, there are a number of solutions for the prevention of single point of failure 

of HDFS namenode, such as Secondary namenode, Avatar namenode, .etc. While the 

drawbacks of these solutions are organized as follows: 

 There is only one active namenode in each HDFS cluster, the rest of namenodes only 

play a role of backup server, since these inactive namenodes cannot serve clients' 

requests, it is kind of a waste of hardware resources. 

 During the process of metadata backup, active namenode firstly persists the updates of 

metadata on its local disk as files, then replicates these files to the inactive 

namenodes, finally inactive namenodes load the files of metadata updates in their 

own main memory. Clearly we can see that the backup process causes heavy disk 

I/O and limits the speed of metadata replication and the overall performance of 

HDFS. 

 Due to high network latency, the backup process is time-consuming if the backup 

server is deployed in the remote area for the reason of disaster tolerance. 

In this paper, we present a solution to improve the high availability for the namenode 

in HDFS . We build a cluster contains a small number of namenodes(typically 3 to 9),this 

cluster uses single writer multiple readers strategy. One namenode called primary, it 

handles all the metadata update requests(create, mkdir, delete, .etc) and a portion of read 

requests from HDFS clients, the rest of namenodes are called hot standbys, they are all 

read only. During the uptime, the primary replicates all the metadata updates to the hot 

standby namenodes continuously, we implement a pub/sub system to handle these 

replication process, the pub/sub system  do not persist any metadata on disk of primary or 

hot standbys to ensure high efficiency. When the primary namenode crashes, the time of 

failover will be finished in a few seconds. Moreover, the hot standbys could be deployed 

in remote data centers for reason of disaster tolerance, we propose a novel replication 

algorithm to deal with the high network latency. 
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2. Background and Related Work 
 

2.1. Metadata of HDFS 

HDFS is a distributed file system currently being used in situations 

where massive amounts of data need to be processed. It offers a way to store large 

files across thousands of physical or virtual machines. It is the building block of 

Apache Map-Reduce framework. Like Linux VFS[10],the metadata of  HDFS is also 

managed by the data structures called inode, inode contains information like file  or 

directory descriptions (path, permissions, leases, etc.), file-data block mappings , 

data block allocations and so on. 

When HDFS is running, namenode receives updates of metadata from HDFS 

clients continuously, datanodes also send block report to namenode periodically to 

tell it whether there are corrupted data blocks or not. Before namenode applying 

these updates to the inode structures in main memory, namenode also log each 

updates into a file called Editlog, for it can construct the metadata by replayin g the 

updates in Editlog.  

In HDFS, the namenode is the single point of failure, if namenode experiences 

software or hardware failure, the whole cluster will go down. Moreover, namenode 

also has become the performance bottleneck of the HDFS cluster since there is only 

one active namenode exists in cluster. Many previous works have discussed how to 

improve the availability and performance of HDFS's namenode. We will make some 

brief introductions of these solutions in the following paragraphs. 

 

2.2. Metadata Availability 

 

2.2.1 Secondary Namenode: The HDFS itself provides an high availability solution 

for namenode called Secondary namenode[11]: as shown in Figure 1, in the HDFS 

cluster there are two namenodes, namely Primary namenode and Secondary 

namenode. Secondary namenode is not active, since it does not respond to any read 

or update request of the metadata, all it needs to do is periodically fetch EditLog 

from primary namenode. When failover occurs, secondary namenode read metadata 

from EditLog from its local disk, then take the role of primary namenode and 

respond to requests from HDFS clients. 

 

 

Figure 1. Secondery Namenode 

Unfortunately, the failover process of this solution above is time-consuming 

because the Secondary or the backup namenode is not a real-time mirror to primary 

namenode, they backup the metadata periodically .Statistics from Facebook 

indicate[12] that for a HDFS contains thousands of datanodes, the recovery of 

Secondary namenode spends tens of minutes. While the solution we present is that, 
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all the metadata in each namenodes are identical in real time, so the time of failover 

will be finished in very soon. 

 

2.2.2 Avatar Namenode  

To shorten the process of failover, Facebook presented a solution called Avartor 

namenode[13], similar to Secondary namenode, the HDFS contains two namenodes, 

one called active namenode, the other one called standby namenode, the active is 

used to serve read and write requests from HDFS clients, after failover occurs 

standby becomes the new active namenode, the major difference from Secondary 

namenode is that the active and standby share metadata files by  using NFS, after 

the active namenode store the Editlog into a shared storage device, while standby 

namenode soon will read the updates of  metadata in real time. 

However, a shared storage device itself becomes another single point of failure to 

the system. The other disadvantage is that, the backup is not active either, it is 

merely warm backup. In our solution all the namenodes are active, and the 

experimental results shows that our solution has excellent system throughput and 

scalability.  

 

2.2.3 Integration with Zookeeper 

ZooKeeper is an open source project from the Apache Software Foundation, 

providing a distributed lock service and synchronization service for  large distributed 

systems. As shown in Figure 2, some deploys Zookeeper on multiple namenode to 

synchronize metadata of HDFS[14]. All of these namenode are active, one 

namenode called leader handles all the write requests, it also uses Zookeeper to 

replicate the updates of metadata to the rest of namenodes for data consistency.  

 

 

Figure 2. Schema of Integration with Zookeeper 

However, the process of metadata replication is inefficient. Because frequent 

synchronization of metadata files across namenodes results in a large amount of disk 

I/O, which limits the speed of replication. One can use SSD instead of hard disk 

drives to accelerate the metadata replication, since SSD’s I/O is much faster than 

HDD’s. But SSD has its own shortcomings, the most notable one is its limited 

lifetime span when serving massive write requests. On the contrary, we implement a 

pub/sub system to handle these replication process, the pub/sub system do 

not persist any metadata on disk of primary namenode or hot standby namenodes, 

which enables high efficiency. 
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2.3. Replication 

Basically, our prototype uses replication techniques to enhance the availability 

and throughput of read operation of namenode. Primary is in charge of the metadata 

replication in order to make sure every namenode in NCluster has the identical 

metadata. 

The updates of any replica introduce the issue of data consistency. Some 

replicated systems adopt strong consistency, such as [5][20], briefly speaking strong 

consistency requires the replicated system acts like a single server that serializes all 

operations, the read operation will never fetch stale results from any replica. To 

accomplish this goal, the replicated systems have to update all the replica 

synchronously, which ensure that every replica receives the same sequence of 

updates and yield the same value. Almost all the replicated systems with strong 

consistency resident within the local-area network, in which the network delay 

remains quite little(tens of millisecond), so the replication process is relative ly fast 

even though it have to propagate the update to every replica.  

For the reason of disaster tolerance and low latency access, we hope our 

prototype could replicates the metadata into different area (data center). Clearly the 

strong consistency does not work well if the replicas are geo-replicated, for the 

network delay is much higher than the local area, and network congestion occurs 

often which could push the time delay to several seconds. The geo-replicated 

systems[19] usually only guarantees the eventual consistency. In these systems the 

updates propagate to each replica asynchronously which shortens the time of 

replication. Unfortunately, systems that embrace eventual consistency have 

limitations because replicas may diverge in the short term as long as the divergence 

is eventually repaired. During this short term some replicas may exhibit stale status, 

and if some application read this stale result they would produce a wrong value. 

 

3. System Design 

In this section, we depict the system design of NCluster. We build a cluster 

contains a small number of namenodes (typically 3 to 5) to manage the metadata 

requests, the cluster uses single writer multiple readers strategy. One namenode 

called primary namenode, it handles all the write requests and a portion of read 

requests from HDFS clients, the rest of namenodes are called hot standby 

namenodes, they are all read only, which means they could only serve the read 

requests. 

Meanwhile, since we have multiple namenodes, for the reason of consistency the 

primary namenode is also responsible for propagating the updates of the metadata to 

the hot standby namenode. We implement a pub/sub system to deal with the 

metadata replications, we find the process is quite efficient because the pub/sub 

mechanism requires no disk I/O. In the following paragraphs we will describe the 

details of NCluster. 
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Figure 3. The Architecture of NCluster 

 

3.1 Architecture 

Figure 3 exhibits the architecture of NCluster. NCluster consists of multiple 

namenodes, HDFS clients access metadata from NCluster, the update request will direct 

to primary namenode, the read request will spread evenly across all the namenodes, for 

the reason of data consistency, primary namenode is also responsible for metadata 

replication. Next we will focus on how to replicate metadata effectively and efficiently. 

 

3.2 What to Replicate 

When HDFS is running, the metadata is stored in the main memory of primary 

namenode for access efficiency, it is managed by the data structures called inode. One 

simple strategy is to replicate the entire inode structure when each time it has been 

modified, we did not apply this because inode contains a lot of information, but often only 

small portion of it would be changed in each update. 

Instead of replicating  the whole inode structure,  when the inode structure is modified 

by an update operation, the primary namenode only replicate the type and the parameters 

of  this update, take mkdir (to make a directory) operations as an example, the primary 

propagates the path of the directory, permissions and timestamp to all the hot standbys. 

Before primary namenode log each updates into EditLog, it propagates the type of 

updates and their parameters to every hot standbys, then each hot standby re-executes the 

updates according to the information it has received from the primary, to make all the 

metadata in NCluster are identical.  

 

3.3. How to Replicate 

As described previously, one can utilize Zookeeper to build multiple active namenodes 

for HDFS. However, this approach could cause intensive disk I/O which limits the 

performance of replication seriously. We implement a pub/sub system based on open 

source project ActiveMQ[15] to deal with metadata replication efficiently in contrast to 

Zookeeper schema. 

The general idea behind pub/sub model is the design pattern called Observer[16], one 

benefit of using this model is the ability to break down the applications into smaller, more 

loosely coupled modules. There are three roles in pub/sub model: publisher, subscriber 

and topics. Topics can be considered as logical channels between publisher and 
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subscriber. The publisher can put messages into a certain topic, the subscriber subscribe 

that topic could get the message instantly. 

 

 

Figure 4. Pub/Sub System 

3.4 Consistency  

Since NCluster has multiple active namenodes, so it introduces the issue of data 

consistency. As all we know, it is very difficult to achieve both of strong consistency and 

low access latency in a distributed storage environment. 

So in the design of NCluster, we provide two replication mode for HDFS clients in the 

local network environment, namely Sync and Async. Sync means that, after HDFS clients 

issue a write request to primary namenode, it is blocked until the metadata have been 

propagated to all the hot standby namenodes. If any of the hot standby does not receive 

the metadata, or it does not response the primary node over the certain time threshold (3s 

in our default setting), this write operation will be rollback. Obviously, Sync write follows 

the strong consistency[17] , read operation  to any of the namenode will return the newest 

data. 

NCluster also offer the Async mode to improve the performance and throughput. When 

NCluster is set with Async, HDFS clients issue a update request to primary namenode, it 

is only been blocked until receive the ack from primary namenode, so it is faster than 

Sync, but the Async only provides a weaker consistency called eventual consistency, it 

only guarantees that the read requests to primary namenode will get the newest metadata, 

the hot standbys may contains the inconsistent (stale) metadata. Since Async is designed 

for the local network environment, metadata in different namenode may diverge in very 

short term as long as the divergence is eventually repaired, the chance of reading an 

inconsistent metadata is low. In the next section we will propose an efficient replication 

algorithm called 2PR when the namenodes in NCluster are geo-distributed. 

 

3.5 Replication Optimization 

As mentioned previously, NCluster can deploy its namenodes at different areas. The 

reason we replicate the metadata of namenode across data centers or sites is to provide 

disaster tolerance, access locality, and read scalability. Note that in this paper we only 

focus on how to make namenodes geo-distributed, the corresponding issue about 

datanodes is beyond the scope of the paper, moreover, the issue of geo-distribution about  

datanodes  has been discussed intensively in [19][20][21]. 

Both of Sync and Async are designed for local-area networks, these algorithms 

perform poorly when namenode are spread over remote sites, Sync prolong the waiting 

time of the  HDFS client, and it is very likely to fetch the stale metadata if NCluster 

utilizes Aysnc because the divergence of metadata may exists for a long time. A solution 
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to this problem is to provision the cross-site links for peak usage but this solution could be 

expensive and wasteful. 

In this section, we narrate our novel replication algorithm called 2PR(2 phase 

replication) for the situation when the namenodes in NCluster are geo-distributed, the 

essence of 2PR is to break each process of metadata replication into two phase, the first 

phase called timestamp replication, in this phase the primary namenode only replicates the 

timestamp information synchronously, after phase one the primary could inform the 

HDFS client that the metadata update is complete. So the client only have to wait a small 

amount of time contrasts to Sync since the size of timestamp information is small(e.g. 

tens of bytes), in the second phase the primary continue to replicate the metadata in the 

background and that does not block the HDFS client. The 2PR can ensure strong 

consistency by checking the timestamp from all the namenodes to find which namenode 

contains the newest metadata.  

Settings: We consider NCluster is able to deploy it namenodes in multiple data centers 

or sites, where each data center are connected to each other by wide-area network links 

which have lower bandwidth and higher latencies than the links within a data center. 

Every namenodes share a synchronized clock, which are used as timestamp. This clock 

can be implemented with GPS sensors, atomic clock, radio signals, or protocols such as 

NTP, Spanner[21] has shown these are feasible even when a system are geo-distributed. 

At last, we do not consider Byzantine failures in the design of NCluster. 

Goals: We must still continue to provide strong consistency when each process of 

metadata replication has been split. The difficulty here is that each update that is split in 

two parts may be interleaved with other updates, creating concurrency problems. To 

address such problems, the read protocol of 2PR includes some additional phases of 

communication and coordination to make sure every read operation from HDFS client can 

fetch the newest metadata from NCluster. 

Details: We now describe the 2PR algorithm in more details. As shown in Figure 5, 

there are one primary and two hot standbys in NCluster, timeline grows from top to 

bottom. At the very beginning, HDFS client sent a metadata update request to the primary 

namenode, the primary’s job is to propagate the data of this update to the other 2 hot 

standbys efficiently, the data includes the type of the update (create, delete, .etc) and the 

its parameters as we discussed earlier, the HDFS client has been blocked until the 

replication process is complete. To replicate the update, the primary acquires a global 

timestamp as the sequence number of the update and starts the 2PR. From the Figure 5 we 

can see that in the first phase, the primary namenode only replicate the timestamp 

information synchronously, after primary receives from ack of timestamp from all the hot 

standbys it informs the HDFS client that the metadata update is complete and the client is 

no longer blocked. The size of timestamp and ack is only 8-16 bytes, so the phase 1 is not 

time-consuming even though the primary and hot standbys are geo-distributed. That also 

means the blocked time of HDFS client is short and it is the reason why 2PR is much 

more efficiently than Sync. In the phase 2, primary starts to propagate the data of the 

update(type and parameters) asynchronously together with a same timestamp with phase1, 

the size of this data in phase 2 is usually large, typically tens of KBs, which is orders of 

magnitude larger phase 1. 
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Figure 5. Detailed Process of 2PR 

To read a consistent metadata, the client uses a small message to ask all the namenodes 

to send their newest consistent timestamp. Take the situation shown in Figure 6 as an 

example, a hot standby has received 3 updates of metadata from the primary through 2PR, 

the timestamps of these updates are 1, 2, 3 respectively. However, in this very special case 

the data of 3rd update came earlier than the 2nd update because the data replication(phase 

2) of 2PR are processed asynchronously and it cannot guarantee the sequence of data 

received by the hot standby, maybe the data of 3rd updates is much smaller than 2nd one 

so it is received earlier. Clearly timestamp 2 is not consistent since it has not received the 

data yet, timestamp 3 is inconsistent either because the 2nd and 3rd update may has some 

causality relationship (create a file and immediately rename it), if hot standbys execute 

3rd update before 2nd one it will goes to a wrong status, so the newest consistent 

timestamp is Figure 6 is 1. 

 

Timeline

TS = 1 TS = 2 TS = 3

TS = 1
Data

TS = 3
Data

Data
Missing

Consistent Inconsistent

 

Figure 6. Consistent Timestamp 

All the namenodes reply to client with a small message contains its newest consistent 

timestamp. Once the client has got all of the replies, it finds out the highest timestamp that 

it received. It then asks the corresponding namenode to send the data associated with 

highest timestamp. If there are more 1 namenodes with the highest timestamp, the client 

chooses the namenode it is close to. The reply is a message with data but, in the common 

case, a namenode in the local data center has the data, so this namenode responds quickly 

without remote communication. Thus, the client can read the consistent metadata without 

being affected by the congestion on the remote path.  

Analysis: We now analyze the Async, Sync and 2PR these three replication 

algorithms. Table 1 summarizes the results. For the update operation, obviously the Async 
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is the fastest, for it only update the primary namenode, the 2PR is slightly slower than 

Async, for it has to update the primary and the all of the hot standbys with timestamp, the 

big advantage is that the 2PR can guarantee the strong consistency. Sync is much more 

time-consuming because it has to update the data to all the hot standbys which result in 

the client has to wait for a long period of time. 

 

Algorithm Update Read Consistency 
Async U(primary, data) R(local, data) Eventual 

Sync 
U(primary, data) 

+ U(hs, data) 
R(local, data) Strong 

2PR 
U(primary, data) 

+ U(hs, ts) 

R(hs, ts) 

+R(data) 
Strong 

Table 1. Comparison of Async, Sync and 2PR 

For read operation, both Async and Sync read the metadata from the namenode in local 

datacenter, but the Async may offer stale result. 2PR firstly send a small message to check 

which namenode contains the newest metadata, then sent the read request to namenode 

which sent this timestamp. So in the common case, the local namenode contains the data 

and the read request finished quickly. In the worst case, the HDFS client has to issue a 

read request to the remote data center. 

 

3.6 Failover 

Note that the failover occurs only when primary namenode is down. The hot standbys 

are simply responsible for read requests, so the system failure or crash of them does not 

impact the whole HDFS cluster. 

Failover consists of 2 steps: leader election and IP address transition. The later step is 

relative simple, since the primary namenode of HDFS is accessed through IP address. 

When a certain hot standby is elected as the new primary namenode, it changes its IP 

address to the same as the old primary node, after that it is able to take over all 

communications with other namenodes and datanodes . 

If NCluster only supports sync mode, new leader election will be easy hence all 

metadata across each namenodes are identical. When the primary namenode meets 

failures, it is feasible to choose any another hot standby namenode randomly as the new 

primary. Unfortunately, things gets more complicated in the situation of NCluster, since 

NCluster should also support Async and 2PR, the metadata exists among these 

namenodes may not be the same. 

Here is our details of leader election, suppose NCluster contains N hot standby 

namenodes, initially we assign an increasing   sequence  of number to each of the hot 

standby, says 1 to N, when hot standbys believe the primary is out of  work (they have  

not  received  the  acknowledgement  of  their heartbeat from primary for a long time 

which exceeds a predefined threshold), the hot standby with the highest number broadcast 

a message to check which hot standby has the most recent metadata, then it sends this 

namenode’s number to the all of hot standbys to make sure every hot standby can realize 

where to synchronize the newest metadata, when the synchronization process is done ,the 

hot standby with the highest number becomes the new primary node and takes charge of 

update request for metadata. 

 

4. Implemention 

In this section we will describe the implementation of NCluster briefly. The NCluser is 

based on HDFS source code 2.02, we modify approximately 1800 lines of Java code. 

These modifications are mainly at: 

 Namenode.java: this source file handling the communication between primary 

namenode and the hot standby namenodes, including the heartbeat to detect 
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whether any of them is healthy or not. It is also in charge of failover in case of 

primary namenode is down. Moreover, during initialization of hot standby, we 

start a thread to receive the metadata updates from the pub/sub system. 

 Datanode.java: we modify this source file because we want to each datanode 

could register at every namenodes in NCluster, so it could receive request from all 

of them. 

 ClientProtocol.java: we add a flag at the all the update request (create, rename, 

mkdir, delete, .etc) of this source file to identify whether this request will be 

running in Sync, Async or 2PR. the other one modification is adding the load 

balance to NCluster when it serves read requests, the strategy is simple: randomly 

spreading the read request across the NCluster. 

 EditLog.java: originally, this file is responsible for logging each update of 

metadata issued by HDFS clients into EditLog. In the implementation of 

NCluster, the primary also puts all the updates it received and their parameters 

into pub/sub system for metadata replication before logging. 

We implement the pub/sub system based on ActiveMQ 5.8.0 for its outstanding 

reliability and scalability. However, ActiveMQ utilizes Serializable interface provided by 

JDK to transfer Java Object over network. On the contrary, we use Writable interface 

provided by HDFS itself to achieve Object transfer because Writable interface is more 

efficient. 

 

5. Evaluations 
 

5.1. Experimental Setup 

 In this section we start to present the evaluation of the NCluster, including replication 

cost, Sync and Async throughput testing, scalability, the comparison to Zookeeper 

schemes and the replication optimization when NCluster is geo-distributed. All 

measurements were performed on HDFS clusters version 2.0.2. The HDFS integrates with 

a NCluster consists of 3 to 9 namenodes and 5 datanodes, each with  2 CPUs  (Intel E5 

2630) and 32 GB RAM. The whole cluster uses a switched 10 Gigabit Ethernet network 

and all nodes are running Ubuntu 14.04 with kernel 3.14. We set each data block has 3 

replicas in HDFS. All experiments have been repeated 3 times and we present the 

arithmetic mean numbers. 

 

5.2. Replication Cost 

First of all, we measure the replication cost of NCluster, The cost of replication time is 

a metric to evaluate the performance penalty of high availability solution, if the penalty of   

metadata replication process is too high, the overall performance of  HDFS cluster will be 

reduced dramatically. We take four typical update requests to measure the replication 

cost:  

 create : to create a file  

 rename : to rename an existing file 

 mkdir: to create a directory 

 delete: to delete a file  

 Note that the replication process contains two main parts: serialization 

(deserialization) of each parameters of operations a, and the transmission delay over 

network. 
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Figure 7. Replication Cost 

We evaluate the replication cost over NCluster consists of 3 and 5 namenodes. Both of 

the NCluster have been tuned into sync mode. Figure 7 indicates the experimental result. 

The replication cost of create, rename, mkdir, delete operations are 435ms, 370ms, 

381ms, 384ms in NCluster contains 3 namenodes respectively, the reason why the create 

operation takes longer time is that it contains 9 parameters, meanwhile the rest only have 

2 or 3. The time spent in serialization and deserialization is relatively small(less than 10 

millisecond) so we do not display them in the Figure7. 

 

5.3. NCluster vs Zookeeper 

As described in section 2, one could also make use of Zookeeper to build a cluster with 

multiple active namenodes. But the process of metadata replication would result in 

extensive disk I/O in every namenode’s local disk, which is awfully inefficient. 

We choose four typical write operations mentioned above and evaluate their metadata 

replication cost in Zookeeper schema, then compare it with NCluster contains 5 

namenodes. The Zookeeper instances have been deployed on 5 namenodes to handle the 

synchronization of metadata files. 

From Figure 8 we can see that the replication time of each operation spent by 

Zookeeper  are 910ms, 796ms, 783ms , 779ms ,while NCluster only spends 530ms, 

460ms ,463 ms, 458ms ,the Zookeeper schema has much higher replication cost , it 

spends more than 70% of time in compare with NCluster. 

 

 

Figure 8. NCluster vs Zookeeper 

5.4 Throughput 

Throughput is another important metric when we evaluate the performance of a 

distributed system. We test the throughput of NCluster by measuring how many files 

HDFS clients can create within one minute when it is integrated with NCluster contains 5 

namenodes. 
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Figure 9. Throughput 

As it can be seen in Figure 9, for files of 10M size, HDFS could create 127 times in 

one minute if NCluster is under Sync mode, whereas 136 and 143 times when it is under 

2PR and Async Algorithm, for files of 100M size, NCluster creates 23, 26, 28 times 

respectively. Clearly the throughput under Async mode is higher than sync mode but the 

Async only guarantee the eventual consistency, HDFS clients may have a little chance to 

read inconsistent status of data during in certain period of time. 

 
5.5 Scalability 

Since NCluster utilizes multiple active namenodes for HDFS, it is essential to validate 

the scalability of NCluster .We test the read throughput of HDFS integrated with NCluster 

contains 3 to 9 namenodes to show the system scalability. We measure how many files 

HDFS clients can read within one minute. 

 

 

Figure 10. Scalability 

 As shown in Figure 10, as the number of namenodes goes up, the read throughput of 

HDFS clients increases almost linearly. Take file of 10M as an example, clients can read 

641 times from HDFS with 3 namenodes in one minute, but if namenode scales up to 5 or 

7, the read throughput will grow to 935 and 1323 times respectively.  
5.6 Geo-Replication 

We deploy the namenodes of NCluster at Tsinghua University in Beijing and SISDC 

(Suzhou International science-park Data Center) in Jiangsu to evaluate the replication 

time under high network delay circumstances. The average round-trip latencies between 

these 2 sites are approximate 200ms. 
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Table 2. % of Requests Finished when NCluster is Geo-Distributed 

Time 
N(1,2) with Sync N(2,3) with Sync 

N(1,2) with 2PR N(2,3) with 2PR 

<250ms 
5.12% 3.43% 

11.87% 7.37% 

<500ms 
29.56% 23.81% 

61.36% 52.67% 

<750ms 
56.11% 43.64% 

81.65% 73.76% 

<1000ms 
76.41% 66.09% 

100% 89.29% 

 

In table 2, N (x,y) means we deploy x namenodes and y namenodes in Tsinghua and 

SISDC respectively, the primary namenode always resides in Tsinghua. We only compare 

the 2PR and Sync. We issue 20000 metadata update requests to NCluster to understand 

the benefits of 2PR under high network latency. Note that we only measure the time of 

metadata replication across Beijing and Jiangsu. 

From the table we can see that the 2PR algorithms perform significantly better than the 

Sync, The cross domain network causes large latencies in the execution of the Sync. With 

the use of 2PR, NCluster are better suited for satisfying such network conditions. Take 

N(1,2) as an example, 2PR finished 100% of the metadata replication in one second 

whereas Sync only accomplished 76.41%, and evaluation on  N(2,3) discovers the same 

fact. 

 

6. Conclusions and Future Work 

Hadoop HDFS is an open source project from Apache Software Foundation for 

scalable, distributed computing and data storage. Unfortunately, Hadoop has quite a little 

high availability support on HDFS namenode yet, existing solutions are far from 

satisfaction. 

In this paper, we present a  solution to improve the availability for namenode of 

HDFS .We build NCluster contains a small number of namenodes (typically 3 to 5), one 

namenode called primary, it handles all the write requests and a portion of read requests 

from HDFS clients, the rest of namenodes called hot standbys ,they are all read only. 

During the uptime, the primary replicates all the metadata updates to the hot standby 

namenodes continuously, we implement a pub/sub system to handle these replication 

processes quite efficiently, we also propose a novel replication algorithm to deal with the 

network delay when the namonodes are deployed in different areas. Experiments verify 

our solution’s feasibility and effectiveness. 

Right now, we use the strategy of random to load balance the multiple namenodes in 

NCluster. Our future work includes finding more effective and adaptive strategy to 

balance the read requests amongst multiple these namenodes based on workload and 

computing resource usage of the namenodes. 
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