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Abstract 

Cloud computing has revolutionized the information and communication technology 

industry by enabling on-demand provisioning of elastic computing resources on a pay-as-

you-go basis. However, due to the large-scale popularization and application, cloud data 

centers consume enormous amounts of electrical energy, which results in high operating 

costs and carbon dioxide emissions. In this paper, twenty-two algorithms are simulated for 

testing the trade-off between the applications performance and energy consumption during 

virtual machine management of cloud data centers in CloudSim simulation toolkit. The goal 

of these algorithms is to reduce energy consumption under ensuring the performace of cloud 

applications. A large number of simulation experimental results prove the performance of 

these twenty-two algorithms respectively. 
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1. Introduction 

Cloud computing [1] is emerging as the latest distributed computing paradigm and attracts 

increasing interests of researchers in the field of distributed and parallel computing. The 

proliferation of cloud computing has resulted in the establishment of large-scale data centers 

containing thousands of computing nodes and consuming enormous amounts of electrical 

energy. The reason for this extremely high energy consumption is not just in the amount of 

computing resources used and the power inefficiency of hardware, but rather lies in the 

inefficient usage of these resources. High energy consumption by the infrastructure leads to 

substantial carbon dioxide emissions contributing to the greenhouse effect [2]. For reducing 

energy consumption in cloud data centers and ensuring SLA [3] between users and cloud 

resource providers, the paper constructs a simulation experiments researches to current 

existed oriented-SLA and energy efficient virtual machine management and placement 

strategies in [4], whose objective is to save energy and reduce the number of SLA violation. 
1
For reducing energy consumption with meeting SLA, we split the problem of the adaptive 

placement of virtual machine into the following two parts:  

(1) Detection Strategy. Determining when a physical node is considered as being overloaded 

(or called hotspot) requiring migration one or more virtual machines from this node.  
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(2) Selection Strategy. Selecting which virtual machines that should be migration from an 

overloaded physical server. 

 

2. Related Works 

Virtual machine placement in cloud data center is an important problem that remains to be 

effectively addressed. The mapping problem between virtual machines and physical hosts is 

to decide how to allocate virtualized resource on the cloud to many applications, thus is 

greatly impacts on the performance, cost and QoS guaranteed service. In ref.[5], a multi-

objective optimization genetic algorithm is proposed to determine deployment strategy, which 

is subject to application SLA constraint. In ref.[6,7], the live migration problem of virtual 

machines is described as an optimization problem. The optimization objective is to minimize 

the energy consumption of physical hosts in cloud data center. But, the above work does not 

consider the performance and SLA violation from the view of user’s applications. Hien 

Nguyen et al. [8] propose a resource management framework combining a utility-based 

dynamic virtual machine provisioning manager and a dynamic virtual machine placement 

manager. Both problems are modeled as constraint satisfaction problems. The virtual machine 

provisioning process aims at maximizing a global utility capturing both the performance of 

the hosted applications with regard to their SLA and the energy related operational cost of the 

cloud computing infrastructure. Different from Li Qiang et al. [5], Hien Nguyen et al. [8] 

lacks of the use of the live migration mechanism of virtual machines. R. Raghavendra et al. 

[9] have investigated the problem of power management for a data center environment by 

combining and coordinating five diverse power management policies. The authors explored 

the problem in terms of control theory and applied a feedback control loop to coordinate the 

controllers’ actions. Sivadon Chaisiri et al. [10] propose an optimal virtual machine 

placement (OVMP) algorithm. The algorithm can minimize the cost spending in each plan for 

hosting virtual machines in a multiple cloud provider environment under future demand and 

price uncertainty. 

Obviously, the virtual machine deployment problem in cloud computing environment 

mainly involves only a single target optimization at present. For example, the physical host 

used is least, or minimizing SLA violations and guaranteeing QoS performance of 

applications, or reducing the total energy consumption of data center and virtual machine 

migration number. However, these optimized goals may be in conflict with each other. In 

order to reduce the number of hosts used, all virtual machines need to be deployed reasonably 

to a smaller number of hosts in bin-packing mode, which can reduce the overhead of idle 

nodes. But this needs multiple virtual machine migrations to achieve. In order to guarantee 

the QoS of applications and reduce SLA violation, virtual machines have to be consolidated 

and migrated in many times, which can turn on more hosts and lead to more energy 

consumption. Meanwhile, the energy consumption is associated with the specific resource 

utilization of physical hosts, so the least used hosts can not always bring the minimum energy 

consumption. An efficient virtual machine deployment strategy should balance and 

compromise the energy consumption, QoS and SLA. 

 

3. Host Overload Detection Algorithms-Detection Strategy 
 

3.1 MPA 

The main idea of MPA (Maximal Power Algorithm) is known as that all hosts consume 

maximum power all the time in a heterogeneous non-power aware cloud data center, which 

means the CPU keeps the maximal power condition. 
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3.2 DVFS 

DVFS is also called as Dynamic Voltage and Frequency Scaling [11]. The main idea of 

DVFS  is: when CPU is not fully utilized, the performance of CPU can be reduced through 

reducing the supply voltage and clock frequency of CPU, which can reduce the dynamic 

power consumption with cubic orders of magnitude and can not affect the performance. 

 

3.3 STH 

STH is called as Static Threshold. It is based on the idea of setting upper utilization 

thresholds for nodes and keeping the total utilization of the CPU by all the virtual machines 

under the threshold. If the CPU utilization of a physical node exceeds the static upper 

threshold, some virtual machines have to be migrated from the node to reduce the CPU 

utilization in order to prevent a potential SLV violation, as showed in Figure 1. 

 

Host 1

VM VM VM VM

Host 1

VM VM VM

Host 2

VMVMVM

Host 2

VM VM

Threshold Threshold

 

Figure 1. STH 

3.4 IQR 

Interquartile Range (IQR) is a measure of statistical dispersion. It is equal to the 

difference between the third and first quartiles: IQR=Q3-Q1. Unlike the total range, the 

interquartile range is a robust statistic, having a breakdown point of 25%, and thus is 

often preferred to the total range. In the overload algorithm based on IQR, the CPU 

utilization threshold is defined as, 

1uT IQR                                                                     (1) 

Where ε is a parameter of the method defining how strongly the system tolerates host 

overloads. In other words, the parameter allows the adjustment of the safety of the 

method: a lower value of ε results in a higher tolerance to variation in the CPU 

utilization, while possibly increasing the level of SLA violations caused by the 

consolication. 

 

3.5 LR 

The main idea of the Local Regression method [12] is fitting simple models to 

localized subsets of data to build up a curve that approximatesthe original data.  The 

observation (xi,yi) are assigned neighborhood weights using the tricube weight function 

shown in Equation (2). 

3 3

0,

(1 | | ) , | | 1
u

otherwise
T

u if u


 

 
                                                     (2) 

If the inequalities (3) are satisfied, the algorithm detects a host overload, requiring some VMs 

to be offloaded from the host. 
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Where tm is the maximum time required for a migration of any of the VMs allocated to 

the host. 

 

3.6 RLWR 

RLWR can adjust the value of the static upper utilization threshold based on a 

statistical analysis of historical data collected during the lifetime of virtual machines. 

Based on LR, the fit is evaluated at the xi to get the fitted value ˆ
iy , and the residuals 

ˆ ˆ
i i ie y y  . At the next step, eahc observation (xi,yi) is assigned an additional 

robustness weight ri, whose value depends on the magnitude of îe . Each observation is 

assigned the weight riwi(x), where ri is defined as, 

ˆ( 6 )i ir B e s                                                                 (4) 

Where B(u) is the bisquare weight function. 
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If the inequalities (6) are satisfied, the algorithm detects a host overload, requiring some VMs 

to be offloaded from the host. 
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Where tm is the maximum time required for a migration of any of the VMs allocated 

to the host. 

 

3.7 MAD 

Median Absolute Deviation (MAD) is a robust statistic, being more resilient to outliers in a 

data set then the standard deviation. In standard deviation, the distances from the mean are 

squared leading to large deviations being on average weighted more heavily. For a univariate 

data set x1,x2,…,xn, MAD is defined as the median of the absolute deviations from the median 

of the data set: 

(| ( ) |)i i j jMAD median x median x                                                        (7) 

In the overload detection algorithm based on MAD, CPU utilization threshold Tu is defined 

as showed in the following, 

1uT MAD                                                                                                           (8) 

 

4. Virtual Machine Selection Algorithms-Selection Strategy 
 

4.1 MPM 

MPM (Minimum Period Migration) migrates a virtual machine v that requires the 

minimum period to complete a migration relatively to the other virtual machines 

allocated to the node. The migration period is defined as the amount of RAM utilized by 
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the virtual machine divided by the space network bandwidth available for the physical 

node j. Let Vj be a set of virtual machines currently allocated to the node j. The set R of 

migrated virtual machines searched by MPM is 

     min ( )

( )

. . ( )

( ) { }

u jv R

j

j a uv R

j j

RAM v NET

R Q V

s t u u v T

Q V U U V





 



 


 




                                               (9) 

Where, RAMu(v) is the amount of RAM currently utilized by the virtual machine v 

and NETj is the spare network bandwidth available for the node j. 

4.2 MNM 

MNM (Minimum Number Migration) selects the minimum number of virtual machines 

needed to migrate from a physical node to lower the CPU utilization below the upper 

utilization threshold if the upper threshold is violated. Let Vj be a set of virtual machines 

currently allocated to the node j, Q(Vj) is the power set of Vj (include null set and all subset of 

universal set). The set R of migrated virtual machines searched by MNM is 

     min

( )

. . ( )

( ) { }

j

j a uv R

j j

R

R Q V

s t u u v T

Q V U U V



 



 


 


                                                                  (10) 

Where, uj is the current CPU utilization of the node j, ua(v) is the fraction of the CPU 

utilization allocated to the virtual machine v. 

 

4.3 MU 

MU (Minimum Utilization) prefers to migrate the virtual machines with the lowest CPU 

utilization. MU is suit for the virtual machine placement strategy with priority. The virtual 

machine with high CPU utilization has high priority and the virtual machine with low CPU 

utilization has low priority. 

 

4.4 RCA 

RCA (Random Choice Algorithm) depends on a random selection of a number of virtual 

machines needed to reduce the CPU utilization by a physical node below the fixed utilization 

threshold. The set R of virtual machines find by RCA: 

(0,| ( ) | 1)
d

jR X U Q V                                                                (11) 

X is a uniformly distributed discrete random variable, whose value index subset of Vj. 
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5. Simulation Experiments 

CloudSim [13] has been selected as a simulation platform, as it is a modern simulation 

framework aimed at cloud computing environment. Contrasting to other simulation toolkits, 

such as SimGrid and GangSim, it allows the modeling of virtualized environments, 

supporting on-demand resource provision and their management. It has been extended to 

enable energy aware simulations, as the core framework does not provide this capacity. 

The cloud environment includes a data center, which consists of N heterogeneous 

physical nodes. According to different process power of CPU, these physical nodes are 

divided equally into two types, represented by (1800MIPS, 2600MIPS). Two types of 

physical nodes both include two process elements (CPU core), 4G RAM and 1GB/s 

network bandwidth. Each virtual machine requires one CPU core with 2500, 2000, 

1500, 500MIPS, 0.8, 1.7, 1.5, 0.6BG of RAM and 100MB of bandwidth. Each virtual 

machine runs a web-application or any kind of application with variable workload, 

which is modeled to generate the utilization of CPU according to a uniformly 

distributed random variable. The application runs for 150,000 MI that is equal to 10 

min of the execution on 250 MIPS CPU with 100% utilization. Initially, all virtual 

machines are allocated according to the requested characteristics assuming 100% CPU 

utilization. 

In order to compare the efficiency of the algorithms we use the following eight metrics to 

evaluate their performance. 

(1) Total energy consumption. The total energy consumption of all physical hosts in data 

center during the execution of application loads.  

(2) The number of virtual machine migration. The number of virtual machine migration 

during the auto-adaptive virtual machine optimization placement and consolidation. 

(3) The SLAV time per active host (SLATAH) 

It is a percentage of time, during which active hosts have experienced the CPU utilization of 

100%. 

,

1 ,

1
SLATAH=

N
i s

i i a

T

N T

                                                                     (12) 

(4) The ratio of performance degradation (RPD) 

It means the overall performance degradation by virtual machines due to migrations. 

,

1 ,

1
RPD=

M
i d

i i t

C

M C

                                                            (13) 

Where N is the number of physical hosts, Ti,s is the total time during which the physical host i 

has experienced the utilization of 100% leading to a SLAV, Ti,a is the total of the 

physical host i being the active state (serving virtual machines), M is the number of 

virtual machines, Ci,d is the estimate of the performance degradation of the virtual 

machine j caused by migration, and Ci,t is the total CPU capacity requested by the virtual 

machine j during its lifetime. In our experiments, we estimate Ci,d as 10% of the CPU 

utilization in MIPS during all migrations of the virtual machine j. 

(5) The service ratio of single node. It is the product of RPD and SLATAH. 

(6) The overall SLA violation. Overall SLA violation (SLAV) is defined as a fraction of the 

difference between the requested MIPS by all the virtual machines Uj,r(t) and the actually 

allocated MIPS Uj,a(t) relatively to the total requested MIPS over the lifetime of the 

virtual machines, as showed in following equation, 
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                               (14) 

Where, M is the number of virtual machines. This metric represents the percentage of the 

CPU performance that has not been allocated when demanded by application relatively 

to the total demand. 

(7) The average SLA violation. The proportion of not allocated CPU to the total requirement 

brought by virtual machine migration.  

(8) The number of shutdown. The number of shutdown during the auto-adaptive virtual 

machine optimization placement and consolidation. 

The following eight figures (Figure 2~9) shows that the changes of the performance metric 

of algorithms under different placement scale of virtual machines. The placement scale of 

virtual machines is defined as the number of physical nodes and virtual machines. Let the 

number of virtual machines equals to the number of physical nodes.  

Figure 10 is to show the effect of different thresholds on the energy consumption and 

SLA of STH. with the increase of the fixed threshold, the energy consumption reduces 

but overall SLAV increases. This is because the increasing threshold will lead to more 

virtual machine consolidation, which brings less virtual machine migration. From the 

above experimental results, we can see the greater threshold dose not mean better, 

which is related to the tradeoff between the energy consumption of hosts and the 

performance of service.  

Figure 11 is to show the effect of different safe factors on the energy consumption 

and SLA of RLWR, LR, MAD and IQR. We can see that with the increase of the safe 

factor, the energy consumption increases, the overall SLAV reduces and the number of 

virtual machine migration increases. This is because the safe factor ε is a parameter of 

the method that defines how aggressively the system consolidates virtual machines. In 

other words, the lower the safe factor ε, the less the energy consumption, but the higher 

the level of SLAV caused by the consolidation.  

Figure 12 is to show the effect of different smoothness degrees on the energy 

consumption and SLA of RLWR and LR. The smoothness factor does not greatly effect 

on the energy consumption of the algorithm. But, the overall SLAV increases and the 

number of virtual machine migration drops off. This is because the increase of 

smoothness factor demonstrates the number of observation points increases for 

estimating a point, which makes the algorithm more robust in terms of bearing load 

peaks. As a result, this will bring less virtual machine migration and more SLAVs. 
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Figure 2. Energy Consumption                  Figure 3. Overall SLAV 
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Figure 4. VM Migration Number                  Figure 5. Shutdown Number 
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Figure 6. SLATAH                                             Figure 7. RPD 
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Figure 8. SLATAH*RPD                     Figure 9. Average SLAV 
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Figure 10. Threshold Effects on STH’s Performance 
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Figure 11. Safety parameter Effects on the Performance of                                  
RLWR, IQR, LR and MAD 
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Figure 12. Smoothness Degree Effects on the Performance of RLWR and LR 

6. Conclusion 

Oriented-SLA and energy-efficient virtual machine management strategies of cloud data 

centers are researched in this paper through a number of simulation experiments. We can see 

that virtual machines are not only deployed on fewer hosts in these self-adaptive placement 

strategies, which promotes energy efficiency through turning off unused hosts, but also the 

load prediction of resource can bring high-reliable QoS delivery and avoid overmuch SLA 

violations. Experimental results show that these strategies have a good effect on decreasing 

SLA violation under ensuring energy efficiency.  
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