Skip to main content
Log in

Excitotoxic and excitoprotective mechanisms

Abundant targets for the prevention and treatment of neurodegenerative disorders

  • Review Article
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Activation of glutamate receptors can trigger the death of neurons and some types of glial cells, particularly when the cells are coincidentally subjected to adverse conditions such as reduced levels of oxygen or glucose, increased levels of oxidative stress, exposure to toxins or other pathogenic agents, or a disease-causing genetic mutation. Such excitotoxic cell death involves excessive calcium influx and release from internal organelles, oxyradical production, and engagement of programmed cell death (apoptosis) cascades. Apoptotic proteins such as p53, Bax, and Par-4 induce mitochondrial membrane permeability changes resulting in the release of cytochrome c and the activation of proteases, such as caspase-3. Events occurring at several subcellular sites, including the plasma membrane, endoplasmic reticulum, mitochondria and nucleus play important roles in excitotoxicity. Excitotoxic cascades are initiated in postsynaptic dendrites and may either cause local degeneration or plasticity of those synapses, or may propagate the signals to the cell body resulting in cell death. Cells possess an array of anti-excitotoxic mechanisms including neurotrophic signaling pathways, intrinsic stress-response pathways, and survival proteins such as protein chaperones, calcium-binding proteins, and inhibitor of apoptosis proteins. Considerable evidence supports roles for excitotoxicity in acute disorders such as epileptic seizures, stroke and traumatic brain and spinal cord injury, as well as in chronic age-related disorders such as Alzheimer’s, Parkinson’s, and Huntington’s disease and amyotrophic lateral sclerosis. A better understanding of the excitotoxic process is not only leading to the development of novel therapeutic approaches for neurodegenerative disorders, but also to unexpected insight into mechanisms of synaptic plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrawal S. K. and Fehlings M. G. (1997) Role of NMDA and non-NMDA ionotropic glutamate receptors in traumatic spinal cord axonal injury. J. Neurosci. 17, 1055–1063.

    PubMed  CAS  Google Scholar 

  • Aizenman E., Hartnett K. A., and Reynolds I. J. (1990) Oxygen free radicals regulate NMDA receptor function via a redox modulatory site. Neuron 5, 841–846.

    PubMed  CAS  Google Scholar 

  • Akins P. T. and Atkinson R. P. (2002) Glutamate AMPA receptor antagonist treatment for ischaemic stroke. Curr. Med. Res. Opin. 18, S9–13.

    PubMed  Google Scholar 

  • Albensi B. C., Sullivan P. G., Thompson M. B., Scheff S. W., and Mattson M. P. (2000) Cyclosporin ameliorates traumatic brain-injury-induced alterations of hippocampal synaptic plasticity. Exp. Neurol. 162, 385–389.

    PubMed  CAS  Google Scholar 

  • Allen J. W., Ivanova S. A., Fan L., Espey M. G., Basile A. S., and Faden A. I. (2000) Group II metabotropic glutamate receptor activation attenuates traumatic neuronal injury and improves neurological recovery after traumatic brain injury. J. Pharmacol. Exp. Ther. 290, 112–120.

    Google Scholar 

  • Allsopp T. E., Kiseley S., Wyatt S., and Davies A. M. (1995) Role of Bcl-2 in the brain-derived neurotrophic factor survival response. Eur. J. Neurosci. 7, 1266–1272.

    PubMed  CAS  Google Scholar 

  • Andreassen O. A., Dedeoglu A., Ferrante R. J., et al. (2001a) Creatine increase survival and delays motor symptoms in a transgenic animal model of Huntington’s disease. Neurobiol. Dis. 8, 479–491.

    PubMed  CAS  Google Scholar 

  • Andreassen O. A., Dedeoglu A., Friedlich A., Ferrante K. L., Hughes D., Szabo C., and Beal M. F. (2001b) Effects of an inhibitor of poly(ADP-ribose) polymerase, desmethylselegiline, trientine, and lipoic acid in transgenic ALS mice. Exp. Neurol. 168, 419–424.

    PubMed  CAS  Google Scholar 

  • Ankarcrona M., Dypbukt J. M., Bonfoco E., Zhivotovsky B., Orrenius S., Lipton S. A., and Nicotera P. (1995) Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 15, 961–973.

    PubMed  CAS  Google Scholar 

  • Ankarcrona M. (1998) Glutamate induced cell death: apoptosis or necrosis? Prog. Brain Res. 116, 265–272.

    PubMed  CAS  Google Scholar 

  • Armijo J. A., Valdizan E. M., De Las Cuevas I., and Cuadrado A. (2002) Advances in the physiopathology of epileptogenesis: molecular aspects. Rev. Neurol. 34, 409–429.

    PubMed  CAS  Google Scholar 

  • Azbill R. D., Mu X., Bruce-Keller A. J., Mattson M. P., and Springer J. E. (1997) Impaired mitochondrial function, oxidative stress and altered antioxidant enzyme activities following traumatic spinal cord injury. Brain Res. 765, 283–290.

    PubMed  CAS  Google Scholar 

  • Barger S. W., Horster D., Furukawa K., Goodman Y., Krieglstein J., and Mattson M. P. (1995) Tumor necrosis factors alpha and beta protect neurons against amyloid beta-peptide toxicity: evidence for involvement of a kappa B-binding factor and attenuation of peroxide and Ca2+ accumulation. Proc. Natl. Acad. Sci. USA 92, 9328–9332.

    PubMed  CAS  Google Scholar 

  • Barger S. W. and Mattson M. P. (1996) Induction of neuroprotective kappa B-dependent transcription by secreted forms of the Alzheimer’s beta-amyloid precursor. Mol. Brain Res. 40, 116–126.

    PubMed  CAS  Google Scholar 

  • Beal M. F., Matthews R. T., Tieleman A., and Shults C. W. (1998) Coenzyme Q10 attenuates the 1-methyl-4-phenyl-1,2,3,tetrahydropyridine (MPTP) induced loss of striatal dopamine and dopaminergic axons in aged mice. Brain Res. 783, 109–114.

    PubMed  CAS  Google Scholar 

  • Ben-Ari Y. and Cossart R. (2000) Kainate, a double agent that generates seizures: two decades of progress. Trends Neurosci. 23, 580–587.

    PubMed  CAS  Google Scholar 

  • Berg M., Bruhn T., Frandsen A., Schousboe A., and Diemer N. H. (1995) Kainic acid-induced seizures and brain damage in the rat: role of calcium homeostasis. J. Neurosci. Res. 40, 641–646.

    PubMed  CAS  Google Scholar 

  • Betarbet R., Sherer T. B., MacKenzie G., Garcia-Osuna M., Panov A. V., and Greenamyre J. T. (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat. Neurosci. 3, 1301–1306.

    PubMed  CAS  Google Scholar 

  • Bezzi P., Domercq M., Vesce S., and Volterra A. (2001) Neuron-astrocyte cross-talk during synaptic transmission: physiological and neuropathological implications. Prog. Brain Res. 132, 255–265.

    PubMed  CAS  Google Scholar 

  • Bi X., Chang V., Siman R., Tocco G., and Baudry M. (1996) Regional distribution and time-course of calpain activation following kainate-induced seizure activity in adult rat brain. Brain Res. 726, 98–108.

    PubMed  CAS  Google Scholar 

  • Blanc E. M., Bruce-Keller A. J., and Mattson M. P. (1998) Astrocytic gap junctional communication decreases neuronal vulnerability to oxidative stress-induced disruption of Ca2+ homeostasis and cell death. J. Neurochem. 70, 958–970.

    Article  PubMed  CAS  Google Scholar 

  • Borlongan C. V. and Sanberg P. R. (2002) Neural transplantation for treatment of Parkinson’s disease. Drug Discov. Today 7, 674–682.

    PubMed  CAS  Google Scholar 

  • Bough K. J., Gudi K., Han F. T., Rathod A. H., and Eagles D. A. (2002) An anticonvulsant profile of the ketogenic diet in the rat. Epilepsy Res. 50, 313–325.

    PubMed  CAS  Google Scholar 

  • Boxer P. A., Cordon J. J., Mann M. E., Rodolosi L. C., Vartanian M. G., Rock D. M., Taylor C. P., and Marcoux F. W. (1990) Comparison of phenytoin with noncompetitive N-methyl-D-aspartate antagonists in a model of focal brain ischemia in rat. Stroke 21, III47–51.

    PubMed  CAS  Google Scholar 

  • Brandt J., Bylsma F. W., Gross R., Stine O. C., Ranen N., and Ross C. A. (1996) Trinucleotide repeat length and clinical progression in Huntington’s disease. Neurology 46, 527–531.

    PubMed  CAS  Google Scholar 

  • Bredt D. S. and Snyder S. H. (1992) Nitric oxide, a novel neuronal messenger. Neuron 8, 3–11.

    PubMed  CAS  Google Scholar 

  • Brewer G. J. and Wallimann T. W. (2000) Protective effect of the energy precursor creatine against toxicity of glutamate and beta-amyloid in rat hippocampal neurons. J. Neurochem. 74, 1968–1978.

    PubMed  CAS  Google Scholar 

  • Brorson J. R., Sulit R. A., and Zhang H. (1997) Nitric oxide disrupts Ca2+ homeostasis in hippocampal neurons. J. Neurochem. 68, 95–105.

    Article  PubMed  CAS  Google Scholar 

  • Brouillet E., Conde F., Beal M. F., and Hantraye P. (1999) Replicating Huntington’s disease phenotype in experimental animals. Prog. Neurobiol. 59, 427–468.

    PubMed  CAS  Google Scholar 

  • Bruce A. J., Boling W., Kindy M. S., Peschon J., Kraemer P. J., Carpenter M. K., Holtsberg F. W., and Mattson M. P. (1996) Altered neuronal and microglial responses to brain injury in mice lacking TNF receptors. Nature Medicine 2, 788–794.

    PubMed  CAS  Google Scholar 

  • Bruce-Keller A. J., Begley J. G., Fu W., Butterfield D. A., Bredesen D. E., Hutchins J. B., Hensley K., and Mattson M. P. (1998) Bcl-2 protects isolated plasma and mitochondrial membranes against lipid peroxidation induced by hydrogen peroxide and amyloid β-peptide. J. Neurochem. 70, 31–39.

    Article  PubMed  CAS  Google Scholar 

  • Bruce-Keller A. J., Umberger G., McFall R., and Mattson M. P. (1999) Food restriction reduces brain damage and improves behavioral outcome following excitotoxic and metabolic insults. Ann. Neurol. 45, 8–15.

    PubMed  CAS  Google Scholar 

  • Brustovetsky N., Brustovetsky T., and Dubinsky J. M. (2001) On the mechanisms of neuroprotection by creatine and phosphocreatine. J. Neurochem. 76, 425–434.

    PubMed  CAS  Google Scholar 

  • Bullock M. R., Merchant R. E., Carmack C. A., Doppenberg E., Shah A. K., Wilner K. D., Ko G., and Williams S. A. (1999) An open-label study of CP-101,606 in subjects with a severe traumatic head injury or spontaneous intracerebral hemorrhage. Ann. NY Acad. Sci. 890, 51–58.

    PubMed  CAS  Google Scholar 

  • Burns M. and Duff K. (2002) Cholesterol in Alzheimer’s disease and tauopathy. Ann. NY Acad. Sci. 977, 367–375.

    PubMed  CAS  Google Scholar 

  • Caba E., Brown Q. B., Kawasaki B., and Bahr B. A. (2002) Peptidyl alpha-keto amide inhibitor of calpain blocks excitotoxic damage without affecting signal transduction events. J. Neurosci. Res. 67, 787–794.

    PubMed  CAS  Google Scholar 

  • Cendes F., Andermann F., Carpenter S., Zatorre R. J., and Cashman N. R. (1995) Temporal lobe epilepsy caused by domoic acid intoxication: evidence for glutamate receptor-mediated excitotoxicity in humans. Ann. Neurol. 37, 123–126.

    PubMed  CAS  Google Scholar 

  • Chan P. H., Chu L., Chen S. F., Carlson E. J., and Epstein C. J. (1990) Reduced neurotoxicity in transgenic mice overexpressing human copper-zinc-superoxide dismutase. Stroke 21, III80-III82.

    PubMed  CAS  Google Scholar 

  • Chan S. L., Griffin W. S. T., and Mattson M. P. (1999) Evidence for caspase-mediated cleavage of AMPA receptor subunits in neuronal apoptosis and in Alzheimer’s disease. J. Neurosci. Res. 57, 315–323.

    PubMed  CAS  Google Scholar 

  • Chen R. W. and Chuang D. M. (1999) Long term lithium treatment suppresses p53 and Bax expression but increases Bcl-2 expression. A prominent role in neuroprotection against excitotoxicity. J. Biol. Chem. 274, 6039–6042.

    PubMed  CAS  Google Scholar 

  • Chen Q. S., Wei W. Z., Shimahara T., and Xie C. W. (2002) Alzheimer amyloid beta-peptide inhibits the late phase of long-term potentiation through calcineurin-dependent mechanisms in the hippocampal dentate gyrus. Neurobiol. Learn. Mem. 77, 354–371.

    PubMed  CAS  Google Scholar 

  • Cheng B. and Mattson M. P. (1991) NGF and bFGF protect rat and human central neurons against hypoglycemic damage by stabilizing calcium homeostasis. Neuron 7, 1031–1041.

    PubMed  CAS  Google Scholar 

  • Cheng B. and Mattson M. P. (1992) IGF-I and IGF-II protect cultured hippocampal and septal neurons against calcium-mediated hypoglycemic damage. J. Neurosci. 12, 1558–1566.

    PubMed  CAS  Google Scholar 

  • Cheng B. and Mattson M. P. (1994) NT-3 and BDNF protect CNS neurons against metabolic/excitotoxic insults. Brain Res. 640, 56–67.

    PubMed  CAS  Google Scholar 

  • Cheng B., Goodman Y., Begley J. G., and Mattson M. P. (1994a) Neurotrophin 4/5 protects hippocampal and cortical neurons against energy deprivation-and excitatory amino acid-induced injury. Brain Res. 650, 331–335.

    PubMed  CAS  Google Scholar 

  • Cheng B., Christakos S., and Mattson M. P. (1994b) Tumor necrosis factors protect neurons against excitotoxic/metabolic insults and promote maintenance of calcium homeostasis. Neuron 12, 139–153.

    PubMed  CAS  Google Scholar 

  • Cheng B. and Mattson M. P. (1995) PDGFs protect hippocampal neurons against energy deprivation and oxidative injury: evidence for induction of antioxidant pathways. J. Neurosci. 15, 7095–7104.

    PubMed  CAS  Google Scholar 

  • Cheng B., Furukawa K., O’Keefe J. A., Goodman Y., Kihiko M., Fabian T., and Mattson M. P. (1995) Basic fibroblast growth factor selectively increases AMPA-receptor subunit GluR1 protein level and differentially modulates Ca2+ responses to AMPA and NMDA in hippocampal neurons. J. Neurochem. 65, 2525–2536.

    Article  PubMed  CAS  Google Scholar 

  • Cluskey S. and Ramsden D. B. (2001) Mechanisms of neurodegeneration in amyotrophic lateral sclerosis. Mol. Pathol. 54, 386–392.

    PubMed  CAS  Google Scholar 

  • Collins R. C., Dobkin B. H., and Choi D. W. (1989) Selective vulnerability of the brain: new insights into the pathophysiology of stroke. Ann. Intern. Med. 110, 992–1000.

    PubMed  CAS  Google Scholar 

  • Conover J. C. and Yancopoulos G. D. (1997) Neurotrophin regulation of the developing nervous system: analyses of knockout mice. Rev. Neurosci. 8, 13–27.

    PubMed  CAS  Google Scholar 

  • Cox P. A. and Sacks O. W. (2002) Cycad neurotoxins, consumption of flying foxes, and ALS-PDC disease in Guam. Neurology 58, 956–959.

    PubMed  Google Scholar 

  • Culcasi M., Lafon-Cazal M., Pietri S., and Bockaert J. (1994) Glutamate receptors induce a burst of superoxide via activation of nitric oxide synthase in arginine-depleted neurons. J. Biol. Chem. 269, 12,589–12,593.

    CAS  Google Scholar 

  • Culmsee C., Zhu X., Yu Q. S., Chan S. L., Camandola S., Guo Z., Greig N. H., and Mattson M. P. (2001) A synthetic inhibitor of p53 protects neurons against death induced by ischemic and excitotoxic insults, and amyloid beta-peptide. J. Neurochem. 77, 220–228.

    Article  PubMed  CAS  Google Scholar 

  • Cutler R. G., Pedersen W. A., Camandola S., Rothstein J. D., and Mattson M. P. (2002) Evidence that accumulation of ceramides and cholesterol esters mediates oxidative stress-induced death of motor neurons in ALS. Ann. Neurol. 52, 448–457.

    PubMed  CAS  Google Scholar 

  • Dargusch R., Piasecki D., Tan S., Liu Y., and Schubert D. (2001) The role of Bax in glutamate-induced nerve cell death. J. Neurochem. 76, 295–301.

    PubMed  CAS  Google Scholar 

  • David J. C., Yamada K. A., Bagwe M. R., and Goldberg M. P. (1996) AMPA receptor activation is rapidly toxic to cortical astrocytes when desensitization is blocked. J. Neurosci. 16, 200–209.

    PubMed  CAS  Google Scholar 

  • Davis S. M., Lees K. R., Albers G. W., Diener H. C., Markabi S., Karlsson G., and Norris J. (2000) Selfotel in acute ischemic stroke: possible neurotoxic effects of an NMDA antagonist. Stroke 31, 347–354.

    PubMed  CAS  Google Scholar 

  • Dawson V. L., Kizushi V. M., Huang P. L., Snyder S. H., and Dawson T. M. (1996) Resistance to neurotoxicity in cortical cultures from neuronal nitric oxide synthase-deficient mice. J. Neurosci. 16, 2479–2487.

    PubMed  CAS  Google Scholar 

  • Dawson V. L. and Dawson T. M. (1998) Nitric oxide in neurodegeneration. Prog. Brain Res. 118, 215–229.

    PubMed  CAS  Google Scholar 

  • Dawson T. M. and Dawson V. L. (2003) Rare genetic mutations shed light on the pathogenesis of Parkinson disease. J. Clin. Invest. 111, 145–151.

    PubMed  CAS  Google Scholar 

  • Decker P. and Muller S. (2002) Modulating poly (ADP-ribose) polymerase activity: potential for the prevention and therapy of pathogenic situations involving DNA damage and oxidative stress. Curr. Pharm. Biotechnol. 3, 275–283.

    PubMed  CAS  Google Scholar 

  • Didier M., Bursztajn S., Adamec E., Passani L., Nixon R. A., Coyle J. T., Wei J. Y., and Berman S. A. (1996) DNA strand breaks induced by sustained glutamate excitotoxicity in primary neuronal cultures. J. Neurosci. 16, 2238–2250.

    PubMed  CAS  Google Scholar 

  • Dirnagl U., Iadecola C., and Moskowitz M. A. (1999) Pathobiology of ischemic stroke: an integrated review. Trends Neurosci. 22, 391–397.

    PubMed  CAS  Google Scholar 

  • Dixon C. E., Flinn P., Bao J., Venya R., and Hayes R. L. (1997) Nerve growth factor attenuates cholinergic deficits following traumatic brain injury in rats. Exp. Neurol. 146, 479–490.

    PubMed  CAS  Google Scholar 

  • Doble A. (1999) The role of excitotoxicity in neurodegenerative disease: implications for therapy. Pharmacol. Ther. 81, 163–221.

    PubMed  CAS  Google Scholar 

  • Drachman D. B., Frank K., Dykes-Hoberg M., Teismann P., Almer G., Przedborski S., and Rothstein J. D. (2002) Cyclooxygenase 2 inhibition protects motor neurons and prolongs survival in a transgenic mouse model of ALS. Ann. Neurol. 52, 771–778.

    PubMed  CAS  Google Scholar 

  • Du Y. and Dreyfus C. F. (2002) Oligodendrocytes as providers of growth factors. J. Neurosci. Res. 68, 647–654.

    PubMed  CAS  Google Scholar 

  • Du Y., Bales K. R., Dodel R. C., Hamilton-Byrd E., Horn J. W., Czilli D. L., Simmons L. K., Ni B., and Paul S. M. (1997) Activation of a caspase 3-related cysteine protease is required for glutamate mediated apoptosis of cultured cerebellar granule neurons. Proc. Natl. Acad. Sci. USA 94, 11,657–11,662.

    CAS  Google Scholar 

  • Duan W. and Mattson M. P. (1999) Dietary restriction and 2-deoxyglucose administration improve behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson’s disease. J. Neurosci. Res. 57, 195–206.

    PubMed  CAS  Google Scholar 

  • Duan W., Rangnekar V. M., and Mattson M. P. (1999) Prostate apoptosis response-4 production in synaptic compartments following apoptotic and excitotoxic insults: evidence for a pivotal role in mitochondrial dysfunction and neuronal degeneration. J. Neurochem. 72, 2312–2322.

    PubMed  CAS  Google Scholar 

  • Duan W., Guo Z., and Mattson M. P. (2001) Brain-derived neurotrophic factor mediates an excitoprotective effect of dietary restriction in mice. J. Neurochem. 76, 619–626.

    PubMed  CAS  Google Scholar 

  • Duan W., Zhu X., Ladenheim B., Yu Q. S., Guo Z., Oyler J., Cutler R. G., Cadet J. L., Greig N. H., and Mattson M. P. (2002a) p53 inhibitors preserve dopamine neurons and motor function in experimental parkinsonism. Ann. Neurol. 52, 597–606.

    PubMed  CAS  Google Scholar 

  • Duan W., Ladenheim B., Cutler R. G., Kruman I. I., Cadet J. L., and Mattson M. P. (2002b) Dietary folate deficiency and elevated homocysteine levels endanger dopaminergic neurons in models of Parkinson’s disease. J. Neurochem. 80, 101–110.

    PubMed  CAS  Google Scholar 

  • Duan W., Guo Z., Jiang H., Ware M., Li X. J., and Mattson M. P. (2003) Dietary restriction normalizes glucose metabolism and BDNF levels, slows disease progression and increases survival in Huntingtin mutant mice. Proc. Natl. Acad. Sci. USA 100, 2911–2916.

    PubMed  CAS  Google Scholar 

  • Duchen M. R. (2000) Mitochondria and calcium: from cell signalling to cell death. J. Physiol. 529, 57–68.

    PubMed  CAS  Google Scholar 

  • Dugan L. L., Sensi S. L., Canzoniero L. M., Handran S. D., Rothman S. M., Goldberg M. P., and Choi D. W. (1995) Mitochondrial production of reactive oxygen species in cortical neurons following exsposure to N-methyl-d-aspartate. J. Neurosci. 15, 6377–6388.

    PubMed  CAS  Google Scholar 

  • Eldadah B. A. and Faden A. I. (2000) Caspase pathways, neuronal apoptosis, and CNS injury. J. Neurotrauma. 17, 811–829.

    PubMed  CAS  Google Scholar 

  • Elliott E., Mattson M. P., Vanderklish P., Lynch G., Chang I., and Sapolsky R. M. (1993) Corticosterone exacerbates kainate-induced alterations in hippocampal tau immunoreactivity and spectrin proteolysis in vivo. J. Neurochem. 61, 57–67.

    PubMed  CAS  Google Scholar 

  • Endres M., Wang Z. Q., Namura S., Waeber C., and Moskowitz M. A. (1997) Ischemic brain injury is mediated by the activation of poly (ADP-ribose) polymerase. J. Cereb. Blood Flow Metab. 17, 1143–1151.

    PubMed  CAS  Google Scholar 

  • Endres M., Fink K., Zhu J., Stagliano N. E., Bondada V., Geddes J. W., Azuma T., Mattson M. P., Kwiatkowski D. J., and Moskowitz M. A. (1999) Neuroprotective effects of gelsolin and cytochalasin D during murine stroke. J. Clin. Invest 103, 347–354.

    PubMed  CAS  Google Scholar 

  • Espey M. G., Chernyshev O. N., Reinhard J. F. Jr., Namboodiri M. A., and Colton C. A. (1997) Activated human microglia produce the excitotoxin quinolinic acid. Neuroreport. 8, 431–434.

    PubMed  CAS  Google Scholar 

  • Feger J., Pessigliore M., Francois C., Tremblay L., and Hirsch E. (2002) Experimental models of Parkinson’s disease. Ann. Pharm. Fr. 60, 3–21.

    PubMed  CAS  Google Scholar 

  • Ferrante R. J., Browne S. E., Shinobu L. A., Bowling A. C., Baik M. J., MacGarvey U., Kowall N. W., Brown R. H., and Beal M. F. (1997) Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J. Neurochem. 69, 2064–2074.

    Article  PubMed  CAS  Google Scholar 

  • Ferrante R. J., Andreassen O. A., Dedeoglu A., Ferrante K. L., Jenkins B. G., Hersch S. M., and Beal M. F. (2002) Therapeutic effects of coenzyme Q10 and remacemide in transgenic mouse models of Huntington’s disease. J. Neurosci. 22, 1592–1599.

    PubMed  CAS  Google Scholar 

  • Frandsen A. and Schousboe A. (1991) Dantrolene prevents glutamate cytotoxicity and calcium release from intracelluar stores in cultured cerebral cortical neurons. J. Neurochem. 56, 1075–1078.

    PubMed  CAS  Google Scholar 

  • Fuller T. A. and Olney J. W. (1981) Only certain anticonvulsants protect against kainate neurotoxicity. Neurobehav. Toxicol. Teratol. 3, 355–361.

    PubMed  CAS  Google Scholar 

  • Furukawa K. and Mattson M. P. (1995) Taxol stabilizes [Ca2+]i and protects hippocampal neurons against excitotoxicity. Brain Res. 689, 141–146.

    PubMed  CAS  Google Scholar 

  • Furukawa K., Smith-Swintosky V. L., and Mattson M. P. (1995) Evidence that actin depolymerization protects hippocampal neurons against excitotoxicity by stabilizing [Ca2+]i. Exp. Neurol. 133, 153–163.

    PubMed  CAS  Google Scholar 

  • Furukawa K., Barger S. W., Blalock E., and Mattson M. P. (1996) Activation of K+ channels and suppression of neuronal activity by secreted β-amyloid precursor protein. Nature 379, 74–78.

    PubMed  CAS  Google Scholar 

  • Furukawa K., Fu W., Li Y., Witke W., Kwiatkowski D. J., and Mattson M. P. (1997) The actin-severing protein gelsolin modulates calcium channel and NMDA receptor activities and vulnerability to excitotoxicity in hippocampal neurons. J. Neurosci. 17, 8178–8186.

    PubMed  CAS  Google Scholar 

  • Furukawa K. and Mattson M. P. (1998) The transcription factor NF-κB mediates increases in calcium currents and decreases in NMDA and AMPA/kainate-induced currents in response to TNFα in hippocampal neurons. J. Neurochem. 70, 1876–1886.

    Article  PubMed  CAS  Google Scholar 

  • Furukawa K., De Souza I., and Scheuenberg G. (2002) Tau mutations in FTDP-17 potentiate calcium release from intracellular stores and activate apoptotic pathways. Neurobiol. Aging 23, S132

    Google Scholar 

  • Gabriel C., Ali C., Lesne S., et al. (2003) Transforming growth factor alpha-induced expression of type 1 plasminogen activator inhibitor in astrocytes rescues neurons from excitotoxicity. FASEB J. 17, 277–279.

    PubMed  CAS  Google Scholar 

  • Gallo V. and Russell J. T. (1995) Excitatory amino acid receptors in glia: different subtypes for distinct functions? J. Neurosci. Res. 42, 1–8.

    PubMed  CAS  Google Scholar 

  • Gariballa S. E. (2000) Nutritional factors in stroke. Br. J. Nutr. 84, 5–17.

    PubMed  CAS  Google Scholar 

  • Gary D. S., Bruce-Keller A. J., Kindy M. S., and Mattson M. P. (1998) Ischemic and excitotoxic brain injury is enhanced in mice lacking the p55 tumor necrosis factor receptor. J. Cereb. Blood Flow Metab. 18, 1283–1287.

    PubMed  CAS  Google Scholar 

  • Gary D. S. and Mattson M. P. (2001) Integrin signaling via the PI3-kinase-Akt pathway increases neuronal resistance to glutamate-induced apoptosis. J. Neurochem. 76, 1485–1496.

    PubMed  CAS  Google Scholar 

  • Gary D. S., Milhavet O., Camandola S., and Mattson M. P. (2003) Essential role for integrin linked kinase in Akt-mediated integrin survival signaling in hippocampal neurons. J. Neurochem. 84, 878–890.

    PubMed  CAS  Google Scholar 

  • Gaviria M., Privat A., d’Arbigny P., Kamenka J., Haton H., and Ohanna F. (2000) Neuroprotective effects of a novel NMDA antagonist, Gacyclidine, after experimental contusive spinal cord injury in adult rats. Brain Res. 874, 200–209.

    PubMed  CAS  Google Scholar 

  • Gilman C. P. and Mattson M. P. (2002) Do apoptotic mechanisms regulate synaptic plasticity and growth-cone motility? Neuromolecular Med. 2, 197–214.

    PubMed  CAS  Google Scholar 

  • Giusti P., Lipartiti M., Franceschini D., Schiavo N., Floreani M., and Manev H. (1996) Neuroprotection by melatonin from kainate-induced excitotoxicity in rats. FASEB J. 10, 891–896.

    PubMed  CAS  Google Scholar 

  • Glazner G. W. and Mattson M. P. (1999) Differential effects of BDNF, ADNF-9, and TNFalpha on levels of NMDA receptor subunits, calcium homeostasis, and neuronal vulnerability to excitotoxicity. Exp. Neurol. 161, 442–452.

    Google Scholar 

  • Glazner G. W., Chan S. L., Lu C., and Mattson M. P. (2000) Caspase-mediated degradation of AMPA receptor subunits: a mechanism for preventing excitotoxic necrosis and ensuring apoptosis. J. Neurosci. 20, 3641–3649.

    PubMed  CAS  Google Scholar 

  • Goodman Y. and Mattson M. P. (1994) Secreted forms of beta-amyloid precursor protein protect hippocampal neurons against amyloid beta-peptide-induced oxidative injury. Exp. Neurol. 128, 1–12.

    PubMed  CAS  Google Scholar 

  • Goodman Y., Steiner M. R., Steiner S. M., and Mattson M. P. (1994) Nordihydroguaiaretic acid protects hippocampal neurons against amyloid beta-peptide toxicity, and attenuates free radical and calcium accumulation. Brain Res. 654, 171–176.

    PubMed  CAS  Google Scholar 

  • Goodman Y. and Mattson M. P. (1996) K+ channel openers protect hippocampal neurons against oxidative injury and amyloid β-peptide toxicity. Brain Res. 706, 328–332.

    PubMed  CAS  Google Scholar 

  • Goodman Y., Bruce A. J., Cheng B., and Mattson M. P. (1996) Estrogens attenuate and corticosterone exacerbates excitotoxicity, oxidative injury, and amyloid beta-peptide toxicity in hippocampal neurons. J. Neurochem. 66, 1836–1844.

    Article  PubMed  CAS  Google Scholar 

  • Gorgias N., Maidatsi P., Tsolaki M., Alvanou A., Kiriazis G., Kaidoglou K., and Giala M. (1996) Hypoxic pretreatment protects against neuronal damage of the rat hippocampus induced by severe hypoxia. Brain Res. 714, 215–225.

    PubMed  CAS  Google Scholar 

  • Grondin R., Zhang Z., Yi A., Cass W. A., Maswood N., Andersen A. H., Elsberry D. D., Klein M. C., Gerhardt G. A., and Gash D. M. (2002) Chronic, controlled GDNF infusion promotes structural and functional recovery in advanced parkinsonian monkeys. Brain. 125, 2191–2201.

    PubMed  Google Scholar 

  • Gunasekar P. G., Kanthasamy A. G., Borowitz J. L., and Isom G. E. (1995) NMDA receptor activation produces concurrent generation of nitric oxide and reactive oxygen species: implication for cell death. J. Neurochem. 65, 2016–2021.

    Article  PubMed  CAS  Google Scholar 

  • Guo Q., Furukawa K., Sopher B. L., Pham D. G., Xie J., Robinson N., Martin G. M., and Mattson M. P. (1996) Alzheimer’s PS-1 mutation perturbs calcium homeostasis and sensitizes PC12 cells to death induced by amyloid beta-peptide. Neuroreport. 8, 379–383.

    PubMed  CAS  Google Scholar 

  • Guo Q., Sopher B. L., Furukawa K., Pham D. G., Robinson N., Martin G. M., and Mattson M. P. (1997) Alzheimer’s presenilin mutation sensitizes neural cells to apoptosis induced by trophic factor withdrawal and amyloid beta-peptide: involvement of calcium and oxyradicals. J. Neurosci. 17, 4212–4222.

    PubMed  CAS  Google Scholar 

  • Guo Q., Fu W., Xie J., Luo H., Sells S. F., Geddes J. W., Bondada V., Rangnekar V., and Mattson M. P. (1998) Par-4 is a mediator of neuronal degeneration associated with the pathogenesis of Alzheimer’s disease. Nature Med. 4, 957–962.

    PubMed  CAS  Google Scholar 

  • Guo Q., Sebastian L., Sopher B. L., Miller M. W., Glazner G. W., Ware C. B., Martin G. M., and Mattson M. P. (1999) Neurotrophic factors [activity-dependent neurotrophic factor (ADNF) and basic fibroblast growth factor (bFGF)] interrupt excitotoxic neurodegenerative cascades promoted by a presenilin-1 mutation. Proc. Natl. Acad. Sci. USA 96, 4125–4130.

    PubMed  CAS  Google Scholar 

  • Guo Q., Fu W., Sopher B. L., Miller M. W., Ware C. B., Martin G. M., and Mattson M. P. (1999a) Increased vulnerability of hippocampal neurons to excitotoxic necrosis in presenilin-1 mutant knock-in mice. Nature Med. 5, 101–107.

    PubMed  CAS  Google Scholar 

  • Guo Q., Sebastian L., Sopher B. L., Miller M. W., Glazner G. W., Ware C. V., Martin G. M., and Mattson M. P. (1999b) Neurotrophic factors [activity-dependent neurotrophic factor (ADNF) and basic fibroblast growth factor (bFGF)] interrupt excitotoxic neurodegenerative cascades promoted by a PS1 mutation. Proc. Natl. Acad. Sci. USA 96, 4125–4130.

    PubMed  CAS  Google Scholar 

  • Gurney M. E., Cutting F. B., Zhai P., Doble A., Taylor C. P., Andrus P. K., and Hall E. D. (1996) Benefit of vitamin E, riluzole, and gabapentin in a transgenic model of familial amyotrophic lateral sclerosis. Ann. Neurol. 39, 147–157.

    PubMed  CAS  Google Scholar 

  • Guttmann R. P., Sokol S., Baker D. L., Simpkins K. L., Dong Y., and Lynch D. R. (2002) Proteolysis of the N-methyl-d-aspartate receptor by calpain in situ. J. Pharmacol. Exp. Ther. 302, 1023–1030.

    PubMed  CAS  Google Scholar 

  • Hadley M. N., Zabramski J. M., Spetzler R. F., Rigamonti D., Fifield M. S., and Johnson P. C. (1989) The efficacy of intravenous nimodipine in the treatment of focal cerebral ischemia in a primate model. Neurosurgery 25, 63–70.

    PubMed  CAS  Google Scholar 

  • Hall E. D. (1993) The role of oxygen radicals in traumatic injury: clinical implications. J. Emerg. Med. 11, S31–36.

    Google Scholar 

  • Hara H., Nagasawa H., and Kogure K. (1990) Nimodipine prevents postischemic brain damage in the early phase of focal cerebral ischemia. Stroke 21, IV102–104.

    PubMed  CAS  Google Scholar 

  • Hara H., Kato H., and Kogure K. (1990) Protective effect of alpha-tocopherol on ischemic neuronal damage in the gerbil hippocampus. Brain Res. 510, 335–338.

    PubMed  CAS  Google Scholar 

  • Hardy J. and Selkoe D. J. (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297, 353–356.

    PubMed  CAS  Google Scholar 

  • Haydon P. G. (2001) GLIA: listening and talking to the synapse. Nat. Rev. Neurosci. 2, 185–193.

    PubMed  CAS  Google Scholar 

  • Hayes R. L., Jenkins L. W., and Lyeth B. G. (1992) Neurotransmitter-mediated mechanisms of traumatic brain injury: acetylcholine and excitatory amino acids. J. Neurotrauma 9, S173-S187.

    PubMed  Google Scholar 

  • Huang Z., Huang P. L., Panahian N., Dalkara T., Fishman M. C., and Moskowitz M. A. (1994) Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science 265, 1883–1885.

    PubMed  CAS  Google Scholar 

  • Hurlbert M. S., Zhou W., Wasmeier C., Kaddis F. G., Hutton J. C., and Freed C. R. (1999) Mice transgenic for an expanded CAG repeat in the Huntington’s disease gene develop diabetes. Diabetes 48, 649–651.

    PubMed  CAS  Google Scholar 

  • Iadecola C., Zhang F., Casey R., Nagayama M., and Ross M. E. (1997) Delayed reduction of ischemic brain injury and neurological deficits in mice lacking the inducible nitric oxide synthase gene. J. Neurosci. 17, 9157–9164.

    PubMed  CAS  Google Scholar 

  • Ikonomidou C. and Turski L. (1996) Prevention of trauma-induced neurodegeneration in infant and adult rat brain: glutamate antagonists. Metab. Brain Dis. 11, 125–141.

    PubMed  CAS  Google Scholar 

  • Kakarieka A., Schakel E. H., and Fritze J. (1994) Clinical experiences with nimodipine in cerebral ischemia. J. Neural. Transm. Suppl. 43, 13–21.

    PubMed  CAS  Google Scholar 

  • Kamii H., Mikawa S., Murakami K., Kinouchi H., Yoshimoto T., Reola L., Carlson E., Epstein C. J., and Chan P. H. (1996) Effects of nitric oxide synthase inhibition on brain infarction in SOD-1-transgenic mice following transient focal cerebral ischemia. J. Cereb. Blood Flow Metab. 16, 1153–1157.

    PubMed  CAS  Google Scholar 

  • Kawasaki-Yatsugi S., Shimizu-Sasamata M., Yatsugi S., and Yamaguchi T. (1998) Delayed treatment with YM90K, an AMPA receptor antagonist, protects against ischaemic damage after middle cerebral artery occlusion in rats. J. Pharm. Pharmacol. 50, 891–898.

    PubMed  CAS  Google Scholar 

  • Keller J. N., Mark R. J., Bruce A. J., Blanc E. M., Rothstein J. D., Uchida K., and Mattson M. P. (1997a) 4-hydroxynonenal, an aldehydic product of membrane lipid peroxidation, impairs glutamate transport and mitochondrial function in synaptosomes. Neuroscience 80, 685–696.

    PubMed  CAS  Google Scholar 

  • Keller J. N. and Mattson M. P. (1997) 17β-estradiol attenuates oxidative impairment of synaptic Na+/K+-ATPase activity, glucose transport and glutamate transport induced by amyloid β-peptide and iron. J. Neurosci. Res. 50, 522–530.

    PubMed  CAS  Google Scholar 

  • Keller J. N., Kindy M. S., Holtsberg F. W., et al. (1998) Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J. Neurosci. 18, 687–697.

    PubMed  CAS  Google Scholar 

  • Kelsey J. E., Sanderson K. L., and Frye C. A. (2000) Perforant path stimulation in rats produces seizures, loss of hippocampal neurons, and a deficit in spatial mapping which are reduced by prior MK-801. Behav. Brain Res. 107, 59–69.

    PubMed  CAS  Google Scholar 

  • Khodorov B., Pinelis V., Vergun O., Storozhevykh T., and Vinskaya N. (1996) Mitochondrial deenergization underlies neuronal calcium overload following a prolonged glutamate challenge. FEBS Lett. 397, 230–234.

    PubMed  CAS  Google Scholar 

  • Kilpatrick G. J. and Tilbrook O. S. (2002) Memantine. Merz. Curr. Opin. Investig. Drugs 3, 798–806.

    CAS  Google Scholar 

  • Kim B. T., Rao V. L., Sailor K. A., Bowen K. K., and Dempsey R. J. (2001) Protective effects of glial cell line-derived neurotrophic factor on hippocampal neurons after traumatic brain injury in rats. J. Neurosurg. 95, 674–679.

    PubMed  CAS  Google Scholar 

  • Koketsu N., Berlove D. J., Moskowitz M. A., Kowall N. W., Caday C. G., and Finklestein S. P. (1994) Pretreatment with intraventricular basic fibroblast growth factor (bFGF) decreases infarct size following focal cerebral ischemia in rats. Ann. Neurol. 35, 451–457.

    PubMed  CAS  Google Scholar 

  • Kondratyev A. and Gale K. (2000) Intracerebral injection of caspase-3 inhibitor prevents neuronal apoptosis after kainic acid-evoked status epilepticus. Mol. Brain Res. 75, 216–224.

    PubMed  CAS  Google Scholar 

  • Kroemer G., Zamzami N., and Susin S. A. (1997) Mitochondrial control of apoptosis. Immunol. Today 18, 44–51.

    PubMed  CAS  Google Scholar 

  • Kruman I., Bruce-Keller A. J., Bredesen D. E., Waeg G., and Mattson M. P. (1997) Evidence that 4-hydroxynonenal mediates oxidative stress-induced neuronal apoptosis. J. Neurosci. 17, 5089–5100.

    PubMed  CAS  Google Scholar 

  • Kruman I. I., Pedersen W. A., Springer J. E., and Mattson M. P. (1999) ALS-linked Cu/Zn-SOD mutation increases vulnerability of motor neurons to excitotoxicity by a mechanism involving increased oxidative stress and perturbed calcium homeostasis. Exp. Neurol. 160, 28–39.

    PubMed  CAS  Google Scholar 

  • Kruman I. I., Culmsee C., Chan S. L., Kruman Y., Guo Z., Penix L., and Mattson M. P. (2000) Homocysteine elicits a DNA damage response in neurons that promotes apoptosis and hypersensitivity to excitotoxicity. J. Neurosci. 20, 6920–6926.

    PubMed  CAS  Google Scholar 

  • Kruman I. I., Kumaravel T. S., Lohani A., Pedersen W. A., Cutler R. G., Kruman Y., Haughey N., Lee J., Evans M., and Mattson M. P. (2002) Folic acid deficiency and homocysteine impair DNA repair in hippocampal neurons and sensitize them to amyloid toxicity in experimental models of Alzheimer’s disease. J. Neurosci. 22, 1752–1762.

    PubMed  CAS  Google Scholar 

  • Kullmann D. M., Asztely F., and Walker M. C. (2000) The role of mammalian ionotropic receptors in synaptic plasticity: LTP, LTD and epilepsy. Cell Mol. Life Sci. 57, 1551–1561.

    PubMed  CAS  Google Scholar 

  • Lafon-Cazal M., Pietri S., Culcasi M., and Bockaert J. (1993) NMDA-dependent superoxide production and neurotoxicity. Nature 364, 535–537.

    PubMed  CAS  Google Scholar 

  • Le W. D., Colom L. V., Xie W. J., Smith R. G., Alexianu M., and Appel S. H. (1995) Cell death induced by beta-amyloid 1-40 in MES 23.5 hybrid clone: the role of nitric oxide and NMDA-gated channel activation leading to apoptosis. Brain Res. 686, 49–60.

    PubMed  CAS  Google Scholar 

  • Lee J., Duan W., and Mattson M. P. (2002) Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice. J. Neurochem. 82, 1367–1375.

    PubMed  CAS  Google Scholar 

  • Lees K. R., Asplund K., Carolei A., Davis S. M., Diener H. C., Kaste M., Orgogozo J. M., and Whitehead J. (2000) Glycine antagonist (gavestinel) in neuroprotection (GAIN International) in patients with acute stroke: a randomised controlled trial. GAIN International Investigators. Lancet 355, 1949–1954.

    PubMed  CAS  Google Scholar 

  • Legos J. J., Tuma R. F., and Barone F. C. (2002) Pharmacological interventions for stroke: failures and future. Expert Opin. Investig. Drugs. 11, 603–614.

    PubMed  CAS  Google Scholar 

  • Leist M., Volbracht C., Kuhnle S., Fava E., Ferrando-May E., and Nicotera P. (1997) Caspase-mediated apoptosis in neuronal excitotoxicity triggered by nitric oxide. Mol. Med. 3, 750–764.

    PubMed  CAS  Google Scholar 

  • Lewen A., Matz P., and Chan P. H. (2000) Free radical pathways in CNS injury. J. Neurotrauma. 17, 871–890.

    Article  PubMed  CAS  Google Scholar 

  • Linnik M. D., Zobrist R. H., and Hatfield M. D. (1993) Evidence supporting a role for programmed cell death in focal cerebral ischemia in rats. Stroke 24, 2002–2008.

    PubMed  CAS  Google Scholar 

  • Lipscombe D., Madison D. V., Poenie M., Reuter H., Tsien R. W., and Tsien R. Y. (1988) Imaging of cytosolic Ca2+ transients arising from Ca2+ stores and Ca2+ channels in sympathetic neurons. Neuron 1, 355–365.

    PubMed  CAS  Google Scholar 

  • Lipsky R. H., Xu K., Zhu D., Kelly C., Terhakopian A., Novelli A., and Marini A. M. (2001) Nuclear factor kappaB is a critical determinant in N-methyl-D-aspartate receptor-mediated neuroprotection. J. Neurochem. 78, 254–264.

    PubMed  CAS  Google Scholar 

  • Lipton S. A., Choi Y. B., Pan Z. H., Lei S. Z., Chen H. S. V., Sucher N. J., Loscaizo J., Singel D. J., and Stamler J. S. (1993) A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364, 626–632.

    PubMed  CAS  Google Scholar 

  • Liu W., Liu R., Chun J. T., Bi R., Hoe W., Schreiber S. S., and Baudry M. (2001) Kainate excitotoxicity in organotypic hippocampal slice cultures: evidence for multiple apoptotic pathways. Brain Res. 916, 239–248.

    PubMed  CAS  Google Scholar 

  • Liu B., Gao H. M., Wang J. Y., Jeohn G. H., Cooper C. L., and Hong J. S. (2002) Role of nitric oxide in inflammation-mediated neurodegeneration. Ann. NY Acad. Sci. 962, 318–331.

    PubMed  CAS  Google Scholar 

  • Liu D., Lu C., Wan R., Auyeung W. W., and Mattson M. P. (2002) Activation of mitochondrial ATP-dependent potassium channels protects neurons against ischemia-induced death by a mechanism involving suppression of Bax translocation and cytochrome c release. J. Cereb. Blood Flow Metab. 22, 431–443.

    PubMed  CAS  Google Scholar 

  • Liu D., Slevin J. R., Chan S. L., and Mattson M. P. (2003) Inhibition of mitochondrial potassium channels reduces focal ischemic brain damage and suppresses oxyradical production and apoptotic cascades. J. Neurochem. (In press).

  • Lockwood A. H. (2000) Pesticides and parkinsonism: is there an etiological link? Curr. Opin. Neurol. 13, 687–690.

    PubMed  CAS  Google Scholar 

  • Loetscher H., Niederhauser O., Kemp J., and Gill R. (2001) Is caspase-3 inhibition a valid therapeutic strategy in cerebral ischemia? Drug Discov. Today. 6, 671–680.

    PubMed  CAS  Google Scholar 

  • Lowenstein D. H., Chan P. H., and Miles M. F. (1991) The stress protein response in neurons: characterization and evidence for a protective role in excitotoxicity. Neuron 7, 1053–1060.

    PubMed  CAS  Google Scholar 

  • Lu C. B., Fu W., and Mattson M. P. (2001) Caspase-mediated suppression of glutamate (AMPA) receptor channel activity in hippocampal neurons in response to DNA damage promotes apoptosis and prevents necrosis: implications for neurological side effects of cancer therapy and neurodegenerative disorders. Neurobol. Dis. 8, 194–206.

    CAS  Google Scholar 

  • Lu C., Chan S. L., Fu W., and Mattson M. P. (2002) The lipid peroxidation product 4-hydroxynonenal facilitates opening of voltage-dependent Ca2+ channels in neurons by increasing protein tyrosine phosphorylation. J. Biol. Chem. 277, 24,368–24,375.

    CAS  Google Scholar 

  • Lu C., Fu W., and Mattson M. P. (2002) Direct cleavage of AMPA receptor subunit GluR1 and suppression of AMPA currents by caspase-3: implications for synaptic plasticity and excitotoxic neuronal death. NeuroMolecular Med. 1, 69–79.

    PubMed  CAS  Google Scholar 

  • Ludolph A. C., Meyer T., and Riepe M. W. (2000) The role of excitotoxicity in ALS—what is the evidence? J. Neurol. 247, I7–1I6.

    PubMed  Google Scholar 

  • Luchsinger J. A., Tang M. X., Shea S., and Mayeux R. (2002) Caloric intake and the risk of Alzheimer disease. Arch. Neurol. 59, 1258–1263.

    PubMed  Google Scholar 

  • Manabe Y., Nagano I., Gazi M. S., Murakami T., Shiote M., Shoji M., Kitagawa H., Setoguchi Y., and Abe K. (2002) Adenovirus-mediated gene transfer of glial cell line-derived neurotrophic factor prevents motor neuron loss of transgenic model mice for amyotrophic lateral sclerosis. Apoptosis 7, 329–334.

    PubMed  CAS  Google Scholar 

  • Marini A. M. and Paul S. M. (1992) N-methyl-d-aspartate receptor-mediated neuroprotection in cerebellar granule cells requires new RNA and protein synthesis. Proc. Natl. Acad. Sci. USA 89, 6555–6559.

    PubMed  CAS  Google Scholar 

  • Marini A. M., Rabin S. J., Lipsky R. H., and Mocchetti I. (1998) Activity-dependent release of brain-derived neurotrophic factor underlies the neuroprotective effect of N-methyl-d-aspartate. J. Biol. Chem. 273, 29,394–29,399.

    CAS  Google Scholar 

  • Marion D. W. (1998) Head and spinal cord injury. Neurol. Clin. 16, 485–502.

    PubMed  CAS  Google Scholar 

  • Mark R. J., Hensley K., Butterfield D. A., and Mattson M. P. (1995a) Amyloid β-peptide impairs ion-motive ATPase activities: evidence for a role in loss of neuronal Ca2+ homeostasis and cell death. J. Neurosci. 15, 6239–6249.

    PubMed  CAS  Google Scholar 

  • Mark R. J., Ashford J. W., Goodman Y., and Mattson M. P. (1995b) Anticonvulsants attenuate amyloid beta-peptide neurotoxicity, Ca2+ deregulation, and cytoskeletal pathology. Neurobiol. Aging 16, 187–198.

    PubMed  CAS  Google Scholar 

  • Mark R. J., Lovell M. A., Markesbery W. R., Uchida K., and Mattson M. P. (1997a) A role for 4-hydroxynonenal in disruption of ion homeostasis and neuronal death induced by amyloid β-peptide. J. Neurochem. 68, 255–264.

    Article  PubMed  CAS  Google Scholar 

  • Mark R. J., Pang Z., Geddes J. W., Uchida K., and Mattson M. P. (1997b) Amyloid β-peptide impairs glucose uptake in hippocampal and cortical neurons: involvement of membrane lipid peroxidation. J. Neurosci. 17, 1046–1054.

    PubMed  CAS  Google Scholar 

  • Martinou J. C., Dubois-Dauphin M., Staple J. K., Rodriguez I., Frankowski H., Missotten M., Albertini P., Talabot D., Catsicas S., and Pietra C. (1994) Overexpression of Bcl-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron 13, 1017–1030.

    PubMed  CAS  Google Scholar 

  • Matthews R. T., Ferrante R. J., Klivenyi P., Yang L., Klein A. M., Mueller G., Kaddurah-Daouk R., and Beal M. F. (1999) Creatine and cyclocreatine attenuate MPTP neurotoxicity. Exp. Neurol. 157, 142–149.

    PubMed  CAS  Google Scholar 

  • Mattson M. P., Dou P., and Kater S. B. (1988) Outgrowth-regulating actions of glutamate in isolated hippocampal pyramidal neurons. J. Neurosci. 8, 2087–2100.

    PubMed  CAS  Google Scholar 

  • Mattson M. P. and Kater S. B. (1989) Excitatory and inhibitory neurotransmitters in the generation and degeneration of hippocampal neuroarchitecture. Brain Res. 478, 337–348.

    PubMed  CAS  Google Scholar 

  • Mattson M. P., Murrain M., Guthrie P. B., and Kater S. B. (1989) Fibroblast growth factor and glutamate: Opposing actions in the generation and degeneration of hippocampal neuroarchitecture. J. Neurosci. 9, 3728–3740.

    PubMed  CAS  Google Scholar 

  • Mattson M. P., Guthrie P. B., and Kater S. B. (1989) A role for Na+-dependent Ca2+ extrusion in protection against neuronal excitotoxicity. FASEB J. 3, 2519–2526.

    PubMed  CAS  Google Scholar 

  • Mattson M. P. and Rychlik B. (1990) Glia protect hippocampal neurons against excitatory amino acid-induced degeneration: involvement of fibroblast growth factor. Int. J. Dev. Neurosci. 8, 399–415.

    PubMed  CAS  Google Scholar 

  • Mattson M. P., Rychlik B., Chu C., and Christakos S. (1991) Evidence for calcium-reducing and excitoprotective roles for the calcium binding protein (calbindin-D28k) in cultured hippocampal neurons. Neuron 6, 41–51.

    PubMed  CAS  Google Scholar 

  • Mattson M. P., Cheng B., Davis D., Bryant K., Lieberburg I., and Rydel R. E. (1992) beta-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J. Neurosci. 12, 376–389.

    PubMed  CAS  Google Scholar 

  • Mattson M. P., Cheng B., Culwell A., Esch F., Lieberburg I., and Rydel R. E. (1993) Evidence for excitoprotective and intraneuronal calcium-regulating roles for secreted forms of β-amyloid precursor protein. Neuron 10, 243–254.

    PubMed  CAS  Google Scholar 

  • Mattson M. P., Zhang Y., and Bose S. (1993) Growth factors prevent mitochondrial dysfunction, loss of calcium homeostasis and cell injury, but not ATP depletion in hippocampal neurons deprived of glucose. Exp. Neurol. 121, 1–13.

    PubMed  CAS  Google Scholar 

  • Mattson M. P., Kumar K., Cheng B., Wang H., and Michaelis E. K. (1993) Basic FGF regulates the expression of a functional 71 kDa NMDA receptor protein that mediates calcium influx and neurotoxicity in cultured hippocampal neurons. J. Neurosci. 13, 4575–4588.

    PubMed  CAS  Google Scholar 

  • Mattson M. P. and Scheff S. W. (1994) Endogenous neuroprotection factors and traumatic brain injury: mechanisms of action and implications for therapy. J. Neurotrauma 11, 3–33.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P., Lovell M. A., Furukawa K., and Markesbery W. R. (1995) Neurotrophic factors attenuate glutamate-induced accumulation of peroxides, elevation of [Ca2+]i and neurotoxicity, and increase antioxidant enzyme activities in hippocampal neurons. J. Neurochem. 65, 1740–1751.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P. (1997) Neuroprotective signal transduction: relevance to stroke. Neurosci. Biobehav. Rev. 21, 193–206.

    PubMed  CAS  Google Scholar 

  • Mattson M. P. (1997) Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol. Rev. 77, 1081–1132.

    PubMed  CAS  Google Scholar 

  • Mattson M. P. (1998) Modification of ion homeostasis by lipid peroxidation: roles in neuronal degeneration and adaptive plasticity. Trends Neurosci. 21, 53–57.

    PubMed  CAS  Google Scholar 

  • Mattson M. P., Keller J. N., and Begley J. G. (1998) Evidence for synaptic apoptosis. Exp. Neurol. 153, 35–48.

    PubMed  CAS  Google Scholar 

  • Mattson M. P., Zhu H., Yu J., and Kindy M. S. (2000) Presenilin-1 mutation increases neuronal vulnerability to focal ischemia in vivo and to hypoxia and glucose deprivation in cell culture: involvement of perturbed calcium homeostasis. J. Neurosci. 20, 1358–1364.

    PubMed  CAS  Google Scholar 

  • Mattson M. P. and Camandola S. (2001) NF-kappaB in neuronal plasticity and neurodegenerative disorders. J. Clin. Invest. 107, 247–254.

    Article  PubMed  CAS  Google Scholar 

  • Matute C., Alberdi E., Domercq M., Perez-Cerda F., Perez-Samartin A., and Sanchez-Gomez M. V. (2001). The link between excitotoxic oligodendroglial death and demyelinating diseases. Trends Neurosci. 24, 224–230.

    PubMed  CAS  Google Scholar 

  • McAdoo D. J., Xu G. Y., Robak G., and Hughes M. G. (1999) Changes in amino acid concentrations over time and space around an impact injury and their diffusion through the rat spinal cord. Exp. Neurol. 159, 538–544.

    PubMed  CAS  Google Scholar 

  • McDonald J. W., Althomsons S. P., Hyrc K. L., Choi D. W., and Goldberg M. P. (1998) Oligodendrocytes from forebrain are highly vulnerable to AMPA/kainate receptor-mediated excitotoxicity. Nat. Med. 4, 291–297.

    PubMed  CAS  Google Scholar 

  • McNaught K. S. and Jenner P. (2000) Extracellular accumulation of nitric oxide, hydrogen peroxide, and glutamate in astrocytic cultures following glutathione depletion, complex I inhibition, and/or lipopolysaccharide-induced activation. Biochem. Pharmacol. 60, 979–988.

    PubMed  CAS  Google Scholar 

  • Meldrum B. S., Akbar M. T., and Chapman A. G. (1999) Glutamate receptors and transporters in genetic and acquired models of epilepsy. Epilepsy Res. 36, 189–204.

    PubMed  CAS  Google Scholar 

  • Menalled L. B. and Chesselet M. F. (2002) Mouse models of Huntington’s disease. Trends Pharmacol. Sci. 23, 32–39.

    PubMed  CAS  Google Scholar 

  • Michaelis E. K. (1998) Molecular biology of glutamate receptors in the central nervous system and their role in excitotoxicity, oxidative stress and aging. Prog. Neurobiol. 54, 369–415.

    PubMed  CAS  Google Scholar 

  • Milatovic D., Gupta R. C., and Dettbarn W. D. (2002) Involvement of nitric oxide in kainic acid-induced excitotoxicity in rat brain. Brain Res. 957, 330–337.

    PubMed  CAS  Google Scholar 

  • Mills C. D., Johnson K. M., and Hulsebosch C. E. (2002) Group I metabotropic glutamate receptors in spinal cord injury: roles in neuroprotection and the development of chronic central pain. J. Neurotrauma. 19, 23–42.

    PubMed  Google Scholar 

  • Miranda A. F., Boegman R. J., Beninger R. J., and Jhamandas K. (1997) Protection against quinolinic acid-mediated excitotoxicity in nigrostriatal dopaminergic neurons by endogenous kynurenic acid. Neuroscience 78, 967–975.

    PubMed  CAS  Google Scholar 

  • Mizota A., Sato E., Taniai M., Adachi-Usami E., and Nishikawa M. (2001) Protective effects of dietary docosahexaenoic acid against kainate-induced retinal degeneration in rats. Invest. Ophthalmol. Vis. Sci. 42, 216–221.

    PubMed  CAS  Google Scholar 

  • Moriwaki A., Lu Y. F., Tomizawa K., and Matsui H. (1998) An immunosuppressant, FK506, protects against neuronal dysfunction and death but has no effect on electrographic and behavioral activities induced by systemic kainate. Neuroscience 86, 855–865.

    PubMed  CAS  Google Scholar 

  • Mossakowski M. J. and Gadamski R. (1990) Nimodipine prevents delayed neuronal death of sector CA1 pyramidal cells in short-term forebrain ischemia in mongolian gerbils. Stroke 21, IV120–122.

    PubMed  CAS  Google Scholar 

  • Muller U. and Krieglstein J. (1995) Prolonged pretreatment with alpha-lipoic acid protects cultured neurons against hypoxic, glutamate-, or iron-induced injury. J. Cereb. Blood Flow Metab. 5, 624–630.

    Google Scholar 

  • Nag D., Garg R. K., and Varma M. (1998) A randomized double-blind controlled study of nimodipine in acute cerebral ischemic stroke. Indian. J. Physiol. Pharmacol. 42, 555–558.

    PubMed  CAS  Google Scholar 

  • Nagano S., Ogawa Y., Yanagihara T., and Sakoda S. (1999) Benefit of a combined treatment with trientine and ascorbate in familial amyotrophic lateral sclerosis model mice. Neurosci. Lett. 265, 159–162.

    PubMed  CAS  Google Scholar 

  • Nellgard B. and Wieloch T. (1992) Cerebral protection by AMPA- and NMDA-receptor antagonists administered after severe insulin-induced hypoglycemia. Exp. Brain Res. 92, 259–266.

    PubMed  CAS  Google Scholar 

  • Nicholls D. G., Budd S. L., Ward M. W., and Castilho R. F. (1999) Excitotoxicity and mitochondria. Biochem. Soc. Symp. 66, 55–67.

    PubMed  CAS  Google Scholar 

  • Novelli A., Reilly J. A., Lysko P. G., and Henneberry R. C. (1988) Glutamate becomes neurotoxic via the N-methyl-D-aspartate receptor when intracellular energy levels are reduced. Brain Res. 451, 205–212.

    PubMed  CAS  Google Scholar 

  • Nozaki K., Finklestein S. P., and Beal M. F. (1993) Basic fibroblast growth factor protects against hypoxia-ischemia and NMDA neurotoxicity in neonatal rats. J. Cereb. Blood Flow Metab. 13, 221–228.

    PubMed  CAS  Google Scholar 

  • Nuglisch J., Karkoutly C., Mennel H. D., Rossberg C., and Krieglstein J. (1990) Protective effect of nimodipine against ischemic neuronal damage in rat hippocampus without changing postischemic cerebral blood flow. J. Cereb. Blood Flow Metab. 10, 654–659.

    PubMed  CAS  Google Scholar 

  • Olney J. W. (1969) Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science 164, 719–721.

    PubMed  CAS  Google Scholar 

  • Ozawa H., Keane R. W., Marcillo A. E., Diaz P. H., and Dietrich W. D. (2002) Therapeutic strategies targeting caspase inhibition following spinal cord injury in rats. Exp. Neurol. 177, 306–313.

    PubMed  CAS  Google Scholar 

  • Pak K., Chan S. L., and Mattson M. P. (2003) Presenilin-1 mutation sensitizes oligodendrocytes to glutamate and amyloid toxicities and exacerbates which matter damage and memory impairment in mice. Neuromolecular Med. (In press.)

  • Pappas I. S. and Parnavelas J. G. (1997) Neurotrophins and basic fibroblast growth factor induce the differentiation of calbindin-containing neurons in the cerebral cortex. Exp. Neurol. 144, 302–314.

    PubMed  CAS  Google Scholar 

  • Parks J. K., Smith T. S., Trimmer P. A., Bennett J. P., and Parker W. D. (2001) Neurotoxic Abeta peptides increase oxidative stress in vivo through NMDA-receptor and nitric-oxide-synthase mechanisms, and inhibit complex IV activity and induce a mitochondrial permeability transition in vitro. J. Neurochem. 76, 1050–1056.

    PubMed  CAS  Google Scholar 

  • Pedersen W. A., Fu W., Keller J. N., Markesbery W. R., Appel S. H., Smith R. G, Kasarskis E., and Mattson M. P. (1998) Protein modification by the lipid peroxidation product 4-hydroxynonenal in spinal cord tissue of ALS patients. Ann. Neurol. 44, 819–824.

    PubMed  CAS  Google Scholar 

  • Pedersen W. A., McCullers D., Culmsee C., Haughey N. J., Herman J. P., and Mattson M. P. (2001) Corticotropin-releasing hormone protects neurons against insults relevant to the pathogenesis of Alzheimer’s disease. Neurobiol. Dis. 8, 492–503.

    PubMed  CAS  Google Scholar 

  • Pedersen W. A., Wan R., Zhang P., and Mattson M. P. (2002) Urocortin, but not urocortin II, protects cultured hippocampal neurons from oxidative and excitotoxic cell death via corticotropin-releasing hormone receptor type I. J. Neurosci. 22, 404–412.

    PubMed  CAS  Google Scholar 

  • Podolsky S., Leopold N. A., and Sax D. S. (1972) Increased frequency of diabetes mellitus in patients with Huntington’s chorea. Lancet 1, 1356–1358.

    PubMed  CAS  Google Scholar 

  • Prehn J. H. M., Backhaub C., and Krieglstein J. (1993) Transforming growth factor-β prevents glutamate toxicity in rat neocortical cell cultures and protects mouse from ischemic injury in vivo. J. Cereb. Blood Flow Metab. 13, 521–525.

    PubMed  CAS  Google Scholar 

  • Rabchevsky A. G., Fugaccia I., Turner A. F., Blades D. A., Mattson M. P., and Scheff S. W. (2000) Basic fibroblast growth factor (bFGF) enhances functional recovery following severe spinal cord injury to the rat. Exp. Neurol. 164, 280–291.

    PubMed  CAS  Google Scholar 

  • Refolo L. M., Malester B., LaFrancois J., Bryant-Thomas T., Wang R., Tint G. S., Sambamurti K., Duff K., and Pappolla M. A. (2000) Hypercholesterolemia accelerates the Alzheimer’s amyloid pathology in a transgenic mouse model. Neurobiol. Dis. 7, 321–331.

    PubMed  CAS  Google Scholar 

  • Rosenberg P. A. and Aizenman E. (1989) Hundred-fold increase in neuronal vulnerability to glutamate toxicity in astrocyte-poor cultures of rat cerebral cortex. Neuroscience 103, 162–168.

    CAS  Google Scholar 

  • Rosenmund C. and Westbrook G. (1993) Calcium-induced actin depolymerization reduces NMDA channel activity. Neuron 10, 805–814.

    PubMed  CAS  Google Scholar 

  • Rothstein J. D., VanKammen B. A., Levey B. A., Martin L. J., and Kuncl R. W. (1995) Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann. Neurol. 38, 73–84.

    PubMed  CAS  Google Scholar 

  • Sagratella S. (1995) NMDA antagonists: antiepileptic-neuroprotective drugs with diversified neuropharmacological profiles. Pharmacol. Res. 32, 1–13.

    PubMed  CAS  Google Scholar 

  • Saroff D., Delfs J., Kuznetsov D., and Geula C. (2000) Selective vulnerability of spinal cord motor neurons to non-NMDA toxicity. Neuroreport 11, 1117–1121.

    PubMed  CAS  Google Scholar 

  • Satoh K., Ikeda Y., Shioda S., Tobe T., and Yoshikawa T. (2002) Edarabone scavenges nitric oxide. Redox. Rep. 7, 219–222.

    PubMed  CAS  Google Scholar 

  • Schapira A. H. (1999) Mitochondrial involvement in Parkinson’s disease, Huntington’s disease, hereditary spastic paraplegia and Friedreich’s ataxia. Biochim. Biophys. Acta. 1410, 159–170.

    PubMed  CAS  Google Scholar 

  • Scheibel A. B. (1979) Dendritic changes in senile and presenile dementias. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 57, 107–124.

    PubMed  CAS  Google Scholar 

  • Sengpiel B., Preis E., Krieglstein J., and Prehn J. H. (1998) NMDA-induced superoxide production and neurotoxicity in cultured rat hippocampal neurons: role of mitochondria. Eur. J. Neurosci. 10, 1903–1910.

    PubMed  CAS  Google Scholar 

  • Seshadri S., Beiser A., Selhub J., Jacques P. F., Rosenberg I. H., D’Agostino R. B., Wilson P. W., and Wolf P. A. (2002) Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N. Engl. J. Med. 346, 476–483.

    PubMed  CAS  Google Scholar 

  • Shoulson I. (1998) DATATOP: a decade of neuroprotective inquiry. Parkinson Study Group. Deprenyl And Tocopherol Antioxidative Therapy Of Parkinsonism. Ann Neurol. 44, S160–166.

    PubMed  CAS  Google Scholar 

  • Shults C. W., Oakes D., Kieburtz K., et al. (2002) Effects of coenzyme Q10 in early Parkinson disease: evidence of slowing of the functional decline. Arch. Neurol. 59, 1541–1550.

    PubMed  Google Scholar 

  • Siddique T. and Lalani I. (2002) Genetic aspects of amyotrophic lateral sclerosis. Adv. Neurol. 88, 21–32.

    PubMed  CAS  Google Scholar 

  • Sieradzan K. A. and Mann D. M. (2001) The selective vulnerability of nerve cells in Huntington’s disease. Neuropathol. Appl. Neurobiol. 27, 1–21.

    PubMed  CAS  Google Scholar 

  • Simpson E. P., Mosier D., and Appel S. H. (2002) Mechanisms of disease pathogenesis in amyotrophic lateral sclerosis. A central role for calcium. Adv. Neurol. 88, 1–19.

    PubMed  CAS  Google Scholar 

  • Sisodia S. S. and St George-Hyslop P. H. (2002) gamma-Secretase, Notch, Abeta and Alzheimer’s disease: where do the presenilins fit in? Nat. Rev. Neurosci. 3, 281–290.

    PubMed  CAS  Google Scholar 

  • Smith-Swintosky V. L., Pettigrew L. C., Craddock S. D., Culwell A. R., Rydel R. E., and Mattson M. P. (1994) Secreted forms of beta-amyloid precursor protein protect against ischemic brain injury. J. Neurochem. 63, 781–784.

    Article  PubMed  CAS  Google Scholar 

  • Smith-Swintosky V. L., Zimmer S., Fenton J. W., and Mattson M. P. (1995) Protease nexin-I and thrombin modulate neuronal Ca2+ homeostasis and sensitivity to glucose deprivation-induced injury. J. Neurosci. 15, 5840–5850.

    PubMed  CAS  Google Scholar 

  • Smith-Swintosky V. L., Pettigrew L. C., Sapolsky R. M., Phares C., Craddock S. D., Brooke S. M., and Mattson M. P. (1996) Metyrapone, an inhibitor of glucocorticoid production, reduces brain injury induced by focal and global ischemia and seizures. J. Cerebr. Blood Flow Metab. 16, 585–598.

    CAS  Google Scholar 

  • Sommer B., Burnashev N., Verdoorn T. A., Keinanen K., Sakmann B., and Seeburg P. H. (1992) A glutamate receptor channel with high affinity for domoate and kainate. EMBO J. 11, 1651–1656.

    PubMed  CAS  Google Scholar 

  • Sonsalla P. K., Albers D. S., and Zeevalk G. D. (1998) Role of glutamate in neurodegeneration of dopamine neurons in several animal models of parkinsonism. Amino Acids. 14, 69–74.

    PubMed  CAS  Google Scholar 

  • Sperk G., Lassmann H., Baran H., Kish S. J., Seitelberger F., and Hornykiewicz O. (1983) Kainic acid induced seizures: neurochemical and histopathological changes. Neuroscience 10, 1301–1315.

    PubMed  CAS  Google Scholar 

  • Springer J. E., Azbill R. D., Mark R. J., Begley J. G., Waeg G., and Mattson M. P. (1997) 4-hydroxynonenal, a lipid peroxidation product, rapidly accumulates following traumatic spinal cord injury and inhibits glutamate uptake. J. Neurochem. 68, 2469–2476.

    Article  PubMed  CAS  Google Scholar 

  • Stein-Behrens B., Mattson M. P., Chang I., Yeh M., and Sapolsky R. M. (1994) Stress excacerbates neuron loss and cytoskeletal pathology in the hippocampus. J. Neurosci. 14, 5373–5380.

    PubMed  CAS  Google Scholar 

  • Stoll G., Jander S., and Schroeter M. (1998) Inflammation and glial responses in ischemic brain lesions. Prog. Neurobiol. 56, 149–171.

    PubMed  CAS  Google Scholar 

  • Sullivan P. G., Geiger J. D., Mattson M. P., and Scheff S. W. (2000) Dietary supplement creatine protects against traumatic brain injury. Ann. Neurol. 48, 723–729.

    PubMed  CAS  Google Scholar 

  • Swann J. W., Al-Noori S., Jiang M., and Lee C. L. (2000) Spine loss and other dendritic abnormalities in epilepsy. Hippocampus 10, 617–625.

    PubMed  CAS  Google Scholar 

  • Tahraoui S. L., Marret S., Bodenant C., Leroux P., Dommergues M. A., Evrard P., and Gressens P. (2001) Central role of microglia in neonatal excitotoxic lesions of the murine periventricular white matter. Brain Pathol. 11, 56–71.

    Article  PubMed  CAS  Google Scholar 

  • Tanzi R. E. and Bertram L. (2001) New frontiers in Alzheimer’s disease genetics. Neuron 32, 181–184.

    PubMed  CAS  Google Scholar 

  • Tatlisumak T., Takano K., Meiler M. R., and Fisher M. (1998) A glycine site antagonist, ZD9379, reduces number of spreading depressions and infarct size in rats with permanent middle cerebral artery occlusion. Stroke 29, 190–195.

    PubMed  CAS  Google Scholar 

  • Turski L., Bressler K., Rettig K. J., Loschmann P. A., and Wachtel H. (1991) Protection of substantia nigra from MPP+ neurotoxicity by N-methyl-d-aspartate antagonists. Nature 349, 414–418.

    PubMed  CAS  Google Scholar 

  • Tymianski M., Wallace M. C., Spigelman I., Uno M., Carlen P. L., Tator C. H., and Charlton M. P. (1993) Cell-permeant Ca2+ chelators reduce early excitotoxic and ischemic neuronal injury in vitro and in vivo. Neuron 11, 221–235.

    PubMed  CAS  Google Scholar 

  • Uchino H., Minamikawa-Tachino R., Kristian T., Perkins G., Narazaki M., Siesjo B. K., and Shibasaki F. (2002) Differential neuroprotection by cyclosporin A and FK506 following ischemia corresponds with differing abilities to inhibit calcineurin and the mitochondrial permeability transition. Neurobiol. Dis. 10, 219–233.

    PubMed  CAS  Google Scholar 

  • Vergun O., Sobolevsky A. I., Yelshansky M. V., Keelan J., Khodorov B. I., and Duchen M. R. (2001) Exploration of the role of reactive oxygen species in glutamate neurotoxicity in rat hippocampal neurones in culture. J. Physiol. 531, 147–163.

    PubMed  CAS  Google Scholar 

  • Volbracht C., Fava E., Leist M., and Nicotera P. (2001) Calpain inhibitors prevent nitric oxide-triggered excitotoxic apoptosis. Neuroreport 12, 3645–3648.

    PubMed  CAS  Google Scholar 

  • Volterra A., Trotti D., Tromba C., Floridi S., and Racagni G. (1994) Glutamate uptake inhibition by oxygen free radicals in rat cortical astrocytes. J. Neurosci. 14, 2924–2932.

    PubMed  CAS  Google Scholar 

  • Wada K., Alonso O. F., Busto R., Panetta J., Clemens J. A., Ginsberg M. D., and Dietrich W. D. (1999) Early treatment with a novel inhibitor of lipid peroxidation (LY341122) improves histopathological outcome after moderate fluid percussion brain injury in rats. Neurosurgery 45, 601–608.

    PubMed  CAS  Google Scholar 

  • Wang G. J., Randall R. D., and Thayer S. A. (1994) Glutamate-induced intracellular acidification of cultured hippocampal neurons demonstrates altered energy metabolism resulting from Ca2+ loads. J. Neurophysiol. 72, 2563–2569.

    PubMed  CAS  Google Scholar 

  • Wang Y., Mattson M. P., and Furukawa K. (2002) Endoplasmic reticulum calcium release is modulated by actin polymerization. J. Neurochem. 82, 945–952.

    PubMed  CAS  Google Scholar 

  • Wei H. and Perry D. C. (1996) Dantrolene is cytoprotective in two models of neuronal cell death. J. Neurochem. 67, 2390–2398.

    Article  PubMed  CAS  Google Scholar 

  • Weiss J. H., Hartley D. M., Koh J., and Choi D. W. (1990) The calcium channel blocker nifedipine attenuates slow excitatory amino acid neurotoxicity. Science 247, 1474–1477.

    PubMed  CAS  Google Scholar 

  • Weiss J. H., Pike C. J., and Cotman C. W. (1994) Ca2+ channel blockers attenuate beta-amyloid peptide toxicity to cortical neurons in culture. J. Neurochem. 62, 372–375.

    Article  PubMed  CAS  Google Scholar 

  • Werth J. L. and Thayer S. A. (1994) Mitochondria buffer physiological calcium loads in cultured rat dorsal root ganglion neurons. J. Neurosci. 14, 348–356.

    PubMed  CAS  Google Scholar 

  • Wolz P. and Krieglstein J. (1996) Neuroprotective effects of alpha-lipoic acid and its enantiomers demonstrated in rodent models of focal cerebral ischemia. Neuropharmacology 35, 369–375.

    PubMed  CAS  Google Scholar 

  • Yakovlev A. G., Knoblach S. M., Fan L., Fox G. B., Goodnight R., and Faden A. I. (1997) Activation of CPP32-like caspases contributes to neuronal apoptosis and neurological dysfunction after traumatic brain injury. J. Neurosci. 17, 7415–7424.

    PubMed  CAS  Google Scholar 

  • Yoshioka A., Bacskai B., and Pleasure D. (1996) Pathophysiology of oligodendroglial excitotoxicity. J. Neurosci. Res. 46, 427–437.

    PubMed  CAS  Google Scholar 

  • Yu Z. F., Bruce-Keller A. J., Goodman Y., and Mattson M. P. (1998) Uric acid protects neurons against excitotoxic and metabolic insults in cell culture, and against focal ischemic brain injury in vivo. J. Neurosci. Res. 53, 613–625.

    PubMed  CAS  Google Scholar 

  • Yu Z. F. and Mattson M. P. (1999) Dietary restriction and 2-deoxyglucose administration reduce focal ischemic brain damage and improve behavioral outcome: evidence for a preconditioning mechanism. J. Neurosci. Res. 57, 830–839.

    PubMed  CAS  Google Scholar 

  • Yu Z., Luo H., Fu W., and Mattson M. P. (1999) The endoplasmic reticulum stress-responsive protein GRP78 protects neurons against excitotoxicity and apoptosis: suppression of oxidative stress and stabilization of calcium homeostasis. Exp. Neurol. 155, 302–314.

    PubMed  CAS  Google Scholar 

  • Zuccato C., Ciammola A., Rigamonti D., et al. (2001) Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science 293, 493–498.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mattson, M.P. Excitotoxic and excitoprotective mechanisms. Neuromol Med 3, 65–94 (2003). https://doi.org/10.1385/NMM:3:2:65

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/NMM:3:2:65

Index Entries

Navigation