Skip to main content
Log in

Optimization of protein-based volumetric optical memories and associative processors by using directed evolution

  • Original Article
  • Published:
NanoBiotechnology

Abstract

The potential use of proteins in device applications has advanced in large part due to significant advances in the methods and procedures of protein engineering, most notably, directed evolution. Directed evolution has been used to tailor a broad range of enzymatic proteins for pharmaceutical and industrial applications. Thermal stability, chemical stability, and substrate specificity are among the most common phenotypes targeted for optimization. However, in vivo screening systems for photoactive proteins have been slow in development. A high-throughput screening system for the photokinetic optimization of photoactive proteins would promote the development of protein-based field-effect transistors, artificial retinas, spatial light modulators, photovoltaic fuel cells, three-dimensional volumetric memories, and optical holographic processors. This investigation seeks to optimize the photoactive protein bacteriorhodopsin (BR) for volumetric optical and holographic memories. Semi-random mutagenesis and in vitro screening were used to create and analyze nearly 800 mutants spanning the entire length of the bacterio-opsin (bop) gene. To fully realize the potential of BR in optoelectronic environments, future investigations will utilize global mutagenesis and in vivo screening systems. The architecture for a potential in vivo screening system is explored in this study. We demonstrate the ability to measure the formation and decay of the red-shifted O-state within in vivo colonies of Halobacterium salinarum, and discuss the implications of this screening method to directed evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vsevolodov, N. N. (1998). Biomolecular Electronics. An Introductionvia Photosensitive Proteins. Birkhauser; Boston, 1998.

    Google Scholar 

  2. Arnold, F. and Moore, J. C. (1997), Adv. Biochem. Eng. 58, 1–14.

    CAS  Google Scholar 

  3. Rubingh, D. N. (1997), Curr. Op. Biotech. 8, 417–422.

    Article  CAS  Google Scholar 

  4. Kuchner, O. and Arnold, F. (1997), Trends Biotech. 15, 523–530.

    Article  CAS  Google Scholar 

  5. Miyazaki, K. and Arnold, F. H. (1999), J. Mol. Evol. 49, 716–720.

    Article  CAS  Google Scholar 

  6. Olsen, M., Iverson, B., and Georgiou, G. (2000), Curr. Op. Biotech. 11, 331–337.

    Article  CAS  Google Scholar 

  7. Arnold, F., Wintrode, P. L., Miyazaki, K., and Gershenson, A. (2001), Trends Biochem. Sci. 26, 100–106.

    Article  CAS  Google Scholar 

  8. Dalby, P. A. (2003), Curr. Opin. Struct. Biol. 13, 500–505.

    Article  CAS  Google Scholar 

  9. Kirk, O., Borchert, T. V., and Fuglsang, C. C. (2002), Curr. Op. Biotech. 13, 345–351.

    Article  CAS  Google Scholar 

  10. Morawski, B., Quan, S., and Arnold, F. (2001), Biotechnol. Bioeng. 76, 99–107.

    Article  CAS  Google Scholar 

  11. Sterner, R. and Liebl, W. (2001), Crit. Rev. Biochem. Mol. Bio. 36, 39–106.

    Article  CAS  Google Scholar 

  12. Whaley, S. R., English, D. S., Hu, E. L., Barbara, P. F., and Belcher, A. M. (2000), Nature 405, 665–668.

    Article  CAS  Google Scholar 

  13. Wise, K. J., Gillespie, N. B., Stuart, J. A., Krebs, M. P., and Birge, R. R. (2002), T. Biotechnol. 20, 387–394.

    Article  CAS  Google Scholar 

  14. Seeman, N. C. and Belcher, A. M. (2002), Proc. Natl. Acad. Sci. USA 99(Suppl 2), 6451–6455.

    Article  CAS  Google Scholar 

  15. Hillebrecht, J. R., Wise, K. J., Koscielecki, J. F., and Birge, R. R. (2004), Methods Enzymol. 388, 333–347.

    CAS  Google Scholar 

  16. Xu, J., Bhattacharya, P., and Varo, G. (2004), Biosens. Bioelectron. 19, 885–892.

    Article  CAS  Google Scholar 

  17. Li, Q., Stuart, J. A., Birge, R. R., Xu, J., Stickrath, A. B., and Bhattacharya, P. (2004). Biosens. Bioelectron. 19, 869–874.

    Article  CAS  Google Scholar 

  18. Xu, J., Stickrath, A. B., Bhattacharya, P., et al. (2003), Biophys. J. 85, 1128–1134.

    Article  CAS  Google Scholar 

  19. Koek, W. D., Bhattacharya, N., Braat, J. J., Chan, V. S., and Westerweel, J. (2004), Opt. Lett. 29, 101–103.

    Article  CAS  Google Scholar 

  20. Hampp, N. (2000), Appl. Microbiol. Biotechnol. 53, 633–639.

    Article  CAS  Google Scholar 

  21. Chen, Z. and Birge, R. R. (1993), Trends Biotech. 11, 292–300.

    Article  CAS  Google Scholar 

  22. Chen, Z., Govender, D., Gross, R., and Birge, R. (1995), BioSystems 35, 145–151.

    Article  CAS  Google Scholar 

  23. Martin, C. H., Chen, Z. P., and Birge, R. R. (1997), in Proc. Pacific Symp. Biocomputing, R. B. Altman, R. K. Dunker, L. Hunter and T. E. Klein, eds., World Scientific, Maui; pp. 268–279.

    Google Scholar 

  24. Birge, R. R., Gillespie, N. B., Izaguirre, E. W., et al. (1999), J. Phys. Chem. B 103, 10,746–10,766.

    Article  CAS  Google Scholar 

  25. Stuart, J. A., Tallent, J. R., Tan, E. H. L., and Birge, R. R. (1996), Proc. IEEE Nonvol. Mem. Tech. (INVMTC) 6, 45–51.

    Article  Google Scholar 

  26. Oesterhelt, D. and Stoeckenius, W. (1971), Nature (London). New Biol. 233, 149–152.

    CAS  Google Scholar 

  27. Lanyi, J. K. (1999), Int. Rev. Cytolo. 187, 161–202.

    Article  CAS  Google Scholar 

  28. Sato, H., Takeda, K., Tani, K., et al. (1999), Acta Cryst. D Biol. Cryst. 55, 1251–1256.

    Article  CAS  Google Scholar 

  29. Birge, R. R. (1981), Ann. Rev. Biophys. Bioeng. 10, 315–354.

    Article  CAS  Google Scholar 

  30. Ebrey, T. G. (1993), Light Energy Transduction in Bacteriorhodopsin, CRC Press, Boca Raton, FL.

    Google Scholar 

  31. Popp, A., Wolperdinger, M., Hampp, N., Bräuchle, C., and Oesterhelt, D. (1993), Biophys. J. 65, 1449–1459.

    CAS  Google Scholar 

  32. Paek, E. G. and Psaltis, D. (1987), Opt. Eng. 26, 428–433.

    Google Scholar 

  33. Birge, R. R., Fleitz, P. A., Gross, R. B., et al. (1990), Proc. IEEE EMBS 12, 1788–1789.

    Google Scholar 

  34. Gross, R. B., Izgi, K. C., and Birge, R. R. (1992), Proc. SPIE 1662, 186–196.

    Article  CAS  Google Scholar 

  35. Birge, R. R., Parsons, B., Song, Q. W., and Tallent, J. R. (1997), Protein-Based Three-Dimensional Memories and Associative Processors, Blackweel Science Ltd., Oxford.

    Google Scholar 

  36. Birge, B., Fleitz, P., Gross, R., et al. Spatial light modulators and optical associative memories based on bacteriorhodopsin. in Materials Research Society, Boston, MA, 1990.

    Google Scholar 

  37. Georgescu, R., Bandara, G., and Sun, L. (2003), Meth. Mol. Biol. 231, 75–83.

    CAS  Google Scholar 

  38. Krebs, M. P., Hauss, T., Heyn, M. P., RajBhandary, U. L., and Khorana, H. G. (1991), Proc. Natl. Acad. Sci. USA 88, 859–863.

    Article  CAS  Google Scholar 

  39. Peck, R. F., Dassarma, S., and Krebs, M. P. (2000), Mol. Microbiol. 35, 667–676.

    Article  CAS  Google Scholar 

  40. Dyall-Smith, M. (2004), The Halohandbook: Protocols for Halobacterial Genetics, Melbourne.

  41. Oesterhelt, D. and Stoeckenius, W. (1973), Proc. Natl. Acad. Sci. USA 70, 2853–2857.

    Article  CAS  Google Scholar 

  42. Baliga, N. S., Kennedy, S. P., Ng, W. V., Hood, L., and Dassarma, S. (2001), Proc. Natl. Acad. Sci. USA. 98, 2521–2525.

    Article  CAS  Google Scholar 

  43. Gillespie, N. B., Wise, K. J., Ren, L., et al. (2002), J. Phys. Chem. B 106, 13,352–13,361.

    Article  CAS  Google Scholar 

  44. Hampp, N., Popp, A., Bräuchle, C., and Oesterhelt, D. (1992), J. Phys. Chem. 96, 4679–4685.

    Article  CAS  Google Scholar 

  45. Zscherp, C., Schlesinger, R., and Heberle, J. (2001), Biochem. and Biophys. Res. Commun. 283, 57–63.

    Article  CAS  Google Scholar 

  46. Balashov, S., Imasheva, E., Ebrey, T., Chen, N., Menick, D., and Crouch, R. (1997), Biochemistry 36, 8671–8676.

    Article  CAS  Google Scholar 

  47. Brown, L. S., Sasaki, J., Kandori, H., Maeda, A., Needleman, R., and Lanyi, J. K. (1995), J. Biol. Chem. 270, 27,122–27,126.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hillebrecht, J.R., Koscielecki, J.F., Wise, K.J. et al. Optimization of protein-based volumetric optical memories and associative processors by using directed evolution. Nanobiotechnol 1, 141–151 (2005). https://doi.org/10.1385/NBT:1:2:141

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/NBT:1:2:141

Key Words

Navigation