Skip to main content
Log in

Brain repair and neuroprotection by serum insulin-like growth factor I

Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The existence of protective mechanisms in the adult brain is gradually being recognized as an important aspect of brain function. For many years, self-repair processes in the post-embryonic brain were considered of minor consequence or nonexistent. This notion dominated the study of neurotrophism. Thus, although the possibility that neurotrophic factors participate in brain function in adult life was prudently maintained, the majority of the studies on the role of trophic factors in the brain were focused on developmental aspects. With the recent recognition that the adult brain keeps a capacity for cell renewal, although limited, a new interest in the regenerative properties of brain tissue has emerged. New findings on the role of insulin-like growth factor I (IGF-I), a potent neurotrophic peptide present at high levels in serum, may illustrate this current trend. Circulating IGF-I is an important determinant of proper brain function in the adult. Its pleiotropic effects range from classical trophic actions on neurons such as housekeeping or anti-apoptotic/pro-survival effects to modulation of brain-barrier permeability, neuronal excitability, or new neuron formation. More recent findings indicate that IGF-I participates in physiologically relevant neuroprotective mechanisms such as those triggered by physical exercise. The increasing number of neurotrophic features displayed by serum IGF-I reinforces the view of a physiological neuroprotective network formed by IGF-I, and possibly other still uncharacterized signals. Future studies with IGF-I, and hopefully other neurotrophic factors, will surely reveal and teach us how to potentiate the self-reparative properties of the adult brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Jones J. I. and Clemmons D. R. (1995) Insulin-like growth factors and their binding proteins: biological actions. Endocr. Rev. 16, 3–34.

    Article  PubMed  CAS  Google Scholar 

  2. LeRoith D. and Roberts C. T., Jr. (1993) Insulin-like growth factors. Ann. NY Acad. Sci. 692, 1–9.

    Article  PubMed  CAS  Google Scholar 

  3. Sjogren K., Liu J. L., Blad K., Skrtic S., Vidal O., Wallenius V., et al. (1999) Liver-derived insulin-like growth factor I (IGF-I) is the principal source of IGF-I in blood but is not required for postnatal body growth in mice. Proc. Natl. Acad. Sci. USA 96, 7088–7092.

    Article  PubMed  CAS  Google Scholar 

  4. Yakar S., Liu J. L., Stannard B., Butler A., Accili D., Sauer B., et al. (1999) Normal growth and development in the absence of hepatic insulin-like growth factor I. Proc. Natl. Acad. Sci. USA 96, 7324–7329.

    Article  PubMed  CAS  Google Scholar 

  5. Feldman E. L., Sullivan K. A., Kim B., and Russell J. W. (1997) Insulin-like growth factors regulate neuronal differentiation and survival. Neurobiol. Dis. 4, 201–214.

    Article  PubMed  CAS  Google Scholar 

  6. Torres-Aleman I. (1999) Insulin-like growth factors as mediators of functional plasticity in the adult brain. Horm. Metab. Res. 31, 114–119.

    Article  PubMed  CAS  Google Scholar 

  7. Busiguina S., Fernandez A. M., Barrios V., Clark R., Tolbert D. L., Berciano J., et al. (2000) Neurodegeneration is associated to changes in serum insulin-like growth factors. Neurobiol. Dis. 7, 657–665.

    Article  PubMed  CAS  Google Scholar 

  8. Mustafa A., Lannfelt L., Lilius L., Islam A., Winblad B., and Adem A. (1999) Decreased plasma insulin-like growth factor-I level in familial Alzheimer’s disease patients carrying the Swedish APP 670/671 mutation. Dement. Geriatr. Cogn. Disord. 10, 446–451.

    Article  PubMed  CAS  Google Scholar 

  9. Schwab S., Spranger M., Krempien S., Hacke W., and Bettendorf M. (1997) Plasma insulin-like growth factor I and IGF binding protein 3 levels in patients with acute cerebral ischemic injury. Stroke 28, 1744–1748.

    PubMed  CAS  Google Scholar 

  10. Tham A., Nordberg A., Grissom F. E., Carlsson-Skwirut C., Viitanen M., and Sara V. R. (1993) Insulin-like growth factors and insulin-like growth factor binding proteins in cerebrospinal fluid and serum of patients with dementia of the Alzheimer type. J. Neural Transm. 5, 165–176.

    Article  CAS  Google Scholar 

  11. Torres-Aleman I., Barrios V., Lledo A., and Berciano J. (1996) The insulin-like growth factor I system in cerebellar degeneration. Ann. Neurol. 39, 335–342.

    Article  PubMed  CAS  Google Scholar 

  12. Torres-Aleman I., Barrios V., and Berciano J. (1998) The peripheral insulin-like growth factor system in amyotrophic lateral sclerosis and in multiple sclerosis. Neurology 50, 772–776.

    PubMed  CAS  Google Scholar 

  13. Carro E., Nunez A., Busiguina S., and Torres-Aleman I. (2000) Circulating insulin-like growth factor I mediates effects of exercise on the brain. J. Neurosci. 20, 2926–2933.

    PubMed  CAS  Google Scholar 

  14. Fernandez A. M., de la Vega A. G., and Torres-Aleman I. (1998) Insulin-like growth factor I restores motor coordination in a rat model of cerebellar ataxia. Proc. Natl. Acad. Sci. USA 95, 1253–1258.

    Article  PubMed  CAS  Google Scholar 

  15. Torres-Aleman I. (2000) Serum growth factors and neuroprotective surveillance. Mol. Neurobiol. 21, 153–160.

    Article  PubMed  CAS  Google Scholar 

  16. Mason J. L., Suzuki K., Chaplin D. D., and Matsushima G. K. (2001) Interleukin-1beta promotes repair of the CNS. J. Neurosci. 21, 7046–7052.

    PubMed  CAS  Google Scholar 

  17. Solerte S. B., Cravello L., Ferrari E., and Fioravanti M. (2000) Overproduction of IFN-gamma and TNF-alpha from natural killer (NK) cells is associated with abnormal NK reactivity and cognitive derangement in Alzheimer’s disease. Ann. NY Acad. Sci. 917, 331–340.

    Article  PubMed  CAS  Google Scholar 

  18. Rubin L. L. and Staddon J. M. (1999) The cell biology of the blood-brain barrier. Annu. Rev. Neurosci. 22, 11–28.

    Article  PubMed  CAS  Google Scholar 

  19. Poduslo J. F., Curran G. L., and Berg C. T. (1994) Macromolecular permeability across the blood-nerve and blood-brain barriers. Proc. Natl. Acad. Sci. USA 91, 5705–5709.

    Article  PubMed  CAS  Google Scholar 

  20. Reinhardt R. R. and Bondy C. A. (1994) Insulin-like growth factors cross the blood-brain barrier. Endocrinology 135, 1753–1761.

    Article  PubMed  CAS  Google Scholar 

  21. Banks W. A., Kastin A. J., Huang W., Jaspan J. B., and Maness L. M. (1996) Leptin enters the brain by a saturable system independent of insulin. Peptides 17, 305–311.

    Article  PubMed  CAS  Google Scholar 

  22. Banks W. A., Jaspan J. B., and Kastin A. J. (1997) Selective, physiological transport of insulin across the blood-brain barrier: novel demonstration by species-specific radioimmunoassays. Peptides 18, 1257–1262.

    Article  PubMed  CAS  Google Scholar 

  23. Deguchi Y., Naito T., Yuge T., Furukawa A., Yamada S., Pardridge W. M., et al. (2000) Blood-brain barrier transport of 125I-labeled basic fibroblast growth factor. Pharm. Res. 17, 63–69.

    Article  PubMed  CAS  Google Scholar 

  24. Pan W., Banks W. A., Fasold M. B., Bluth J., and Kastin A. J. (1998) Transport of brain-derived neurotrophic factor across the blood-brain barrier. Neuropharmacology 37, 1553–1561.

    Article  PubMed  CAS  Google Scholar 

  25. Pan W., Banks W. A., and Kastin A. J. (1998) Permeability of the blood-brain barrier to neurotrophins. Brain Res. 788, 87–94.

    Article  PubMed  CAS  Google Scholar 

  26. Pan W. and Kastin A. J. (1999) Entry of EGF into brain is rapid and saturable. Peptides 20, 1091–1098.

    Article  PubMed  Google Scholar 

  27. Pan W., Kastin A. J., Maness L. M., and Brennan J. M. (1999) Saturable entry of ciliary neurotrophic factor into brain. Neurosci. Lett. 263, 69–71.

    Article  PubMed  CAS  Google Scholar 

  28. Poduslo J. F. and Curran G. L. (1996) Permeability at the blood-brain and blood-nerve barriers of the neurotrophic factors: NGF, CNTF, NT-3, BDNF. Brain Res. Mol. Brain Res. 36, 280–286.

    Article  PubMed  CAS  Google Scholar 

  29. Bondy C. A. and Lee W. H. (1993) Patterns of insulin-like growth factor and IGF receptor gene expression in the brain. Functional implications. Ann. NY Acad. Sci. 692, 33–43.

    Article  PubMed  CAS  Google Scholar 

  30. Rita P. (1993) Nonsynaptic diffusion neurotransmission (NDN) in the brain. Neurochem. Int. 23, 297–318.

    Article  Google Scholar 

  31. Pardridge W. M. (2002) Targeting neurotherapeutic agents through the blood-brain barrier. Arch. Neurol. 59, 35–40.

    Article  PubMed  Google Scholar 

  32. Jones J. I., Gockerman A., Busby W. H. Jr., Wright G., and Clemmons D. R. (1993) Insulin-like growth factor binding protein 1 stimulates cell migration and binds to the alpha 5 beta 1 integrin by means of its Arg-Gly-Asp sequence. Proc. Natl. Acad. Sci. USA 90, 10,553–10,557.

    CAS  Google Scholar 

  33. Blau H. M., Brazelton T. R., and Weimann J. M. (2001) The evolving concept of a stem cell: entity or function? Cell 105, 829–841.

    Article  PubMed  CAS  Google Scholar 

  34. Aberg M. A., Aberg N. D., Hedbacker H., Oscarsson J., and Eriksson P. S. (2000) Peripheral infusion of IGF-I selectively induces neurogenesis in the adult rat hippocampus. J. Neurosci. 20, 2896–2903.

    PubMed  CAS  Google Scholar 

  35. Trejo J. L., Carro E., and Torres-Aleman I. (2001) Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J. Neurosci. 21, 1628–1634.

    PubMed  CAS  Google Scholar 

  36. Castro-Alamancos M. A. and Torres-Aleman I. (1993) Long-term depression of glutamate-induced gamma-aminobutyric acid release in cerebellum by insulin-like growth factor I. Proc. Natl. Acad. Sci. USA 90, 7386–7390.

    Article  PubMed  CAS  Google Scholar 

  37. Thoenen H. (1995) Neurotrophins and neuronal plasticity. Science 270, 593–598.

    Article  PubMed  CAS  Google Scholar 

  38. Chang S. and Popov S. V. (1999) Long-range signaling within growing neurites mediated by neurotrophin-3. Proc. Natl. Acad. Sci. USA 96, 4095–4100.

    Article  PubMed  CAS  Google Scholar 

  39. Desai N. S., Rutherford L. C., and Turrigiano G. G. (1999) BDNF regulates the intrinsic excitability of cortical neurons. Learn. Mem. 6, 284–291.

    PubMed  CAS  Google Scholar 

  40. Wang Y. T. and Linden D. J. (2000) Expression of cerebellar long-term depression requires postsynaptic clathrin-mediated endocytosis. Neuron 25, 635–647.

    Article  PubMed  CAS  Google Scholar 

  41. Castro-Alamancos M. A. and Torres-Aleman I. (1994) Learning of the conditioned eye-blink response is impaired by an antisense insulin-like growth factor I oligonucleotide. Proc. Natl. Acad. Sci. USA 91, 10,203–10,207.

    Article  CAS  Google Scholar 

  42. Al Majed A. A., Neumann C. M., Brushart T. M., and Gordon T. (2000) Brief electrical stimulation promotes the speed and accuracy of motor axonal regeneration. J. Neurosci. 20, 2602–2608.

    Google Scholar 

  43. Prolla T. A. and Mattson M. P. (2000) Molecular mechanisms of brain aging and neurodegenerative disorders: lessons from dietary restriction. Trends Neurosci. 24, S31.

    Google Scholar 

  44. Blair L. A. and Marshall J. (1997) IGF-1 modulates N and L calcium channels in a PI 3-kinase-dependent manner. Neuron 19, 421–429.

    Article  PubMed  CAS  Google Scholar 

  45. De Luca A., Pierno S., Liantonio A., Camerino C., and Conte C. D. (1998) Phosphorylation and IGF-1-mediated dephosphorylation pathways control the activity and the pharmacological properties of skeletal muscle chloride channels. Br. J. Pharmacol. 125, 477–482.

    Article  PubMed  Google Scholar 

  46. Gonzalez de la Vega A., Buno W., Pons S., Garcia-Calderat M. S., Garcia-Galloway E., and Torres-Aleman I. (2001) Insulin-like growth factor I potentiates kainate receptors through a phosphatidylinositol 3-kinase dependent pathway. Neuroreport 12, 1293–1296.

    Article  PubMed  CAS  Google Scholar 

  47. Kanzaki M., Zhang Y. Q., Mashima H., Li L., Shibata H., and Kojima I. (1999) Translocation of a calcium-permeable cation channel induced by insulin-like growth factor-I. Nat. Cell Biol. 1, 165–170.

    Article  PubMed  CAS  Google Scholar 

  48. Kelsch W., Hormuzdi S., Straube E., Lewen A., Monyer H., and Misgeld U. (2001) Insulin-like growth factor 1 and a cytosolic tyrosine kinase activate chloride outward transport during maturation of hippocampal neurons. J. Neurosci. 21, 8339–8347.

    PubMed  CAS  Google Scholar 

  49. Man Y. H., Lin J. W., Ju W. H., Ahmadian G., Liu L., Becker L. E., et al. (2000) Regulation of AMPA receptor-mediated synaptic transmission by clathrin- dependent receptor internalization. Neuron 25, 649–662.

    Article  PubMed  CAS  Google Scholar 

  50. Sakagami K., Wu D. M., and Puro D. G. (1999) Physiology of rat retinal pericytes: modulation of ion channel activity by serum-derived molecules. J. Physiol. 521, Pt 3, 637–650.

    Article  PubMed  CAS  Google Scholar 

  51. Savchenko A., Kraft T. W., Molokanova E., and Kramer R. H. (2001) Growth factors regulate phototransduction in retinal rods by modulating cyclic nucleotide-gated channels through dephosphorylation of a specific tyrosine residue. Proc. Natl. Acad. Sci. USA 98, 5880–5885.

    Article  PubMed  CAS  Google Scholar 

  52. Shanley L. J., Irving A. J., Rae M. G., Ashford M. L., and Harvey J. (2002) Leptin inhibits rat hippocampal neurons via activation of large conductance calcium-activated K+ channels. Nat. Neurosci. 5, 299–300.

    Article  PubMed  CAS  Google Scholar 

  53. Yang F., Feng L., Zheng F., Johnson S. W., Du J., Shen L., et al. (2001) GDNF acutely modulates excitability and A-type K(+) channels in midbrain dopaminergic neurons. Nat. Neurosci. 4, 1071–1078.

    Article  PubMed  CAS  Google Scholar 

  54. Arsenijevic Y., Weiss S., Schneider B., and Aebischer P. (2001) Insulin-like growth factor-1 is necessary for neural stem cell proliferation and demonstrates distinct actions of epidermal growth factor and fibroblast growth factor-2. J. Neurosci. 21, 7194–7202.

    PubMed  CAS  Google Scholar 

  55. Anderson M. F., Aberg M. A., Nilsson M., and Eriksson P. S. (2002) Insulin-like growth factor-I and neurogenesis in the adult mammalian brain. Brain Res. Dev. Brain Res. 134, 115–122.

    Article  PubMed  CAS  Google Scholar 

  56. Cameron H. A. and McKay R. D. (2001) Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J. Comp. Neurol. 435, 406–417.

    Article  PubMed  CAS  Google Scholar 

  57. Carro E., Trejo J. L., Busiguina S., and Torres-Aleman I. (2001) Circulating insulin-like growth factor I mediates the protective effects of physical exercise against brain insults of different etiology and anatomy. J. Neurosci. 21, 5678–5684.

    PubMed  CAS  Google Scholar 

  58. Armstrong R. J. and Barker R. A. (2001) Neurodegeneration: a failure of neuroregeneration? Lancet 358, 1174–1176.

    Article  PubMed  CAS  Google Scholar 

  59. Arsenijevic Y., Villemure J. G., Brunet J. F., Bloch J. J., Deglon N., Kostic C., et al. (2001) Isolation of multipotent neural precursors residing in the cortex of the adult human brain. Exp. Neurol. 170, 48–62.

    Article  PubMed  CAS  Google Scholar 

  60. Magavi S. S., Leavitt B. R., and Macklis J. D. (2000) Induction of neurogenesis in the neocortex of adult mice. Nature 405, 951–955.

    Article  PubMed  CAS  Google Scholar 

  61. Lundberg C., Martinez-Serrano A., Cattaneo E., McKay R. D., and Bjorklund A. (1997) Survival, integration, and differentiation of neural stem cell lines after transplantation to the adult rat striatum. Exp. Neurol. 145, 342–360.

    Article  PubMed  CAS  Google Scholar 

  62. Peterson D. A. (2002) Stem cells in brain plasticity and repair. Curr. Opin. Pharmacol. 2, 34–42.

    Article  PubMed  CAS  Google Scholar 

  63. Roelen C. A., de Vries W. R., Koppeschaar H. P., Vervoorn C., Thijssen J. H., and Blankenstein M. A. (1997) Plasma insulin-like growth factor-I and high affinity growth hormone-binding protein levels increase after two weeks of strenuous physical training. Int. J. Sports Med. 18, 238–241.

    Article  PubMed  CAS  Google Scholar 

  64. Wallace J. D., Cuneo R. C., Baxter R., Orskov H., Keay N., Pentecost C., et al. (1999) Responses of the growth hormone (GH) and insulin-like growth factor axis to exercise, GH administration, and GH withdrawal in trained adult males: a potential test for GH abuse in sport. J. Clin. Endocrinol. Metab. 84, 3591–3601.

    Article  PubMed  CAS  Google Scholar 

  65. Anthony T. G., Anthony J. C., Lewitt M. S., Donovan S. M., and Layman D. K. (2001) Time course changes in IGFBP-1 after treadmill exercise and postexercise food intake in rats. Am. J. Physiol. 280, E650-E656.

    CAS  Google Scholar 

  66. Eliakim A., Brasel J. A., Mohan S., Wong W. L., and Cooper D. M. (1998) Increased physical activity and the growth hormone-IGF-I axis in adolescent males. Am. J. Physiol. 275, R308-R314.

    PubMed  CAS  Google Scholar 

  67. Eliakim A., Moromisato M., Moromisato D., Brasel J. A., Roberts C., and Cooper D. M. (1997) Increase in muscle IGF-I protein but not IGF-I mRNA after 5 days of endurance training in young rats. Am. J. Physiol. 273, R1557-R1561.

    PubMed  CAS  Google Scholar 

  68. Kramer A. F., Hahn S., Cohen N. J., Banich M. T., McAuley E., Harrison C. R., et al. (1999) Ageing, fitness and neurocognitive function. Nature 400, 418–419.

    Article  PubMed  CAS  Google Scholar 

  69. Larsen J. O., Skalicky M., and Viidik A. (2000) Does long-term physical exercise counteract age-related purkinje cell loss? A stereological study of rat cerebellum. J. Comp. Neurol. 428, 213–222.

    Article  PubMed  CAS  Google Scholar 

  70. Neeper S. A., Gomez-Pinilla F., Choi J., and Cotman C. (1995) Exercise and brain neurotrophins. Nature 373, 109.

    Article  PubMed  CAS  Google Scholar 

  71. Radaka Z., Kanekob T., Taharab S., Nakamotoc H., Pucsokd J., Sasvarie M., et al. (2001) Regular exercise improves cognitive function and decreases oxidative damage in rat brain. Neurochem. Int. 38, 17–23.

    Article  Google Scholar 

  72. van Praag H., Kempermann G., and Gage F. H. (1999) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat. Neurosci. 2, 266–270.

    Article  PubMed  Google Scholar 

  73. Thoenen H. (2000) Neurotrophins and activity-dependent plasticity. Prog. Brain Res. 128, 183–191.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Torres-Aleman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carro, E., Trejo, J.L., Núñez, A. et al. Brain repair and neuroprotection by serum insulin-like growth factor I. Mol Neurobiol 27, 153–162 (2003). https://doi.org/10.1385/MN:27:2:153

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:27:2:153

Index Entries

Navigation