Skip to main content
Log in

Molecular advances in understanding inherited prion diseases

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The prion diseases are neurodegenerative disorders that have attracted great interest because of the possible link between bovine spongiform encephalopathy (BSE) and variant Creutzfeldt-Jakob disease (CTD) in humans. Possible transmission of these diseases has been linked to a single protein termed the prion protein. This protein is an abnormal isoform of a normal synaptic glycoprotein. The majority of prion diseases does not appear to be caused by transmission of an infectious agent but occur spontaneously with no known cause. The strongest supporting evidence that the prion protein is the causative agent in prion disease comes from specific inheritable forms of prion disease which are linked to single point mutations in the prion protein gene. Paradoxically, these point mutations, although autosomal dominant with 100% penetrance do not lead to disease until late in life. Molecular techniques are now being used extensively to determine how these point-mutations alter the prion protein’s normal structure and activity. This review deals with the latest insights into how inherited mutations in the prion protein gene lead to neurodegenerative disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Knaus, K. J., Morillas, M., Swietnicki, W., Malone, M., Surewicz, W. K., and Yee, V. C. (2001) Crystal structure of the human prion protein reveals a mechanism for oligomerization. Nat. Struct. Biol. 8, 770–774.

    Article  PubMed  CAS  Google Scholar 

  2. Meyer, R. K., Lustig, A., Oesch, B., Fatzer, R., Zurbriggen, A., and Vandevelde, M. (2000) A monomer-dimer equilibrium of a cellular prion protein (PrPc) not observed with recombinant PrP. J. Biol. Chem. 275, 38081–38087.

    Article  PubMed  CAS  Google Scholar 

  3. Riek, R., Hornemann, S., Wider, G., Billeter, M., Glockshuber, R., and Wuthrich, K. (1996) NMR structure of the mouse prion protein domain PrP(121–321). Nature 382, 180–182.

    Article  PubMed  CAS  Google Scholar 

  4. Zahn, R., Liu, A., Luhrs, T., Riek, R., von Schroetter, C., Lopez Garcia, F., et al. (2000) NMR solution structure of the human prion protein. Proc. Natl. Acad. Sci. USA 97, 145–150.

    Article  PubMed  CAS  Google Scholar 

  5. Brown, D. R., Qin, K., Herms, J. W., Madlung, A., Manson, J., Strome, R., et al. (1997) The cellular prion protein binds copper in vivo. Nature 390, 684–687.

    Article  PubMed  CAS  Google Scholar 

  6. Stöckel, J., Safar, J., Wallace, A. C., Cohen, F. E., and Prusiner, S. B. (1998) Prion protein selectively binds copper(II) ions. Biochemistry 37, 7185–7193.

    Article  PubMed  Google Scholar 

  7. Cereghetti, G. M., Schweiger, A., Glockshuber, R., and Van Doorslaer, S. (2001) Electron paramagnetic resonance evidence for binding of cu(2+) to the c-terminal domain of the murine prion protein. Biophys. J. 81, 516–525.

    PubMed  CAS  Google Scholar 

  8. Jackson, G. S., Murray, I., Hosszu, L. L., Gibbs, N., Waltho, J. P., Clarke, A. R., and Collinge, J. (2001) Location and properties of metal-binding sites on the human prion protein. Proc. Natl. Acad. Sci. USA 98, 8531–8535.

    Article  PubMed  CAS  Google Scholar 

  9. Sàles, N., Rodolfo, K., Hassig, R., Faucheux, B., Di Giamberardino, L., and Moya, K.-L. (1998) Cellular prion protein localization in rodent and primate brain. Eur. J. Neurosci. 10, 2464–2471.

    Article  PubMed  Google Scholar 

  10. Brown, D. R., Schmidt, B., and Kretzschmar, H. A. (1997) Effects of oxidative stress on prion protein expression in PC12 cells. Int. J. Dev. Neurosci. 15, 961–972.

    Article  PubMed  CAS  Google Scholar 

  11. Collinge, J., Whittington, M. A., Sidle, K. C., Smith, C. J., Palmer, M. S., Clarke, A. R., and Jefferys, J. G. (1994) Prion protein is necessary for normal synaptic function. Nature 370, 295–297.

    Article  PubMed  CAS  Google Scholar 

  12. Tobler, I., Gaus, S. E., Deboer, T., Achermann, P., Fischer, M., Rülicke, T., et al. (1996) Altered circadian activity rhythms and sleep in mice devoid of prion protein. Nature 380, 639–642.

    Article  PubMed  CAS  Google Scholar 

  13. Brown, D. R., Wong, B. S., Hafiz, F., Clive, C., Haswell, S., and Jones, I. M. (1999) Normal prion protein has an activity like that of superoxide dismutase. Biochem. J. 344, 1–5.

    Article  PubMed  CAS  Google Scholar 

  14. Brown, D. R., Clive, C., and Haswell, S. J. (2001) Anti-oxidant activity related to copper binding of native prion protein. J. Neurochem. 76, 69–76.

    Article  PubMed  CAS  Google Scholar 

  15. Prusiner, S. B. (1998) Prions. Proc. Natl. Acad. Sci. USA 95, 13363–13383.

    Article  PubMed  CAS  Google Scholar 

  16. Bolton, D. C., McKinley, M. P., and Prusiner, S. B. (1982) Identification of a protein that purifies with the scrapie prion. Science 218, 1309–1311.

    Article  PubMed  CAS  Google Scholar 

  17. Meyer, R. K., McKinley, M. P., Bowman, K. A., Braunfeld, M. B., Barry, R. A., and Prusiner, S. B. (1986) Separation and properties of cellular and scrapie prion proteins. Proc. Natl. Acad. Sci. USA 83, 2310–2314.

    Article  PubMed  CAS  Google Scholar 

  18. Wong, B.-S., Chen, S. G., Colucci, M., Xie, Z., Pan, T., Liu, T., et al. (2001) Aberrant metal binding by prion protein in human prion disease. J. Neurochem. 78, 1400–1408.

    Article  PubMed  CAS  Google Scholar 

  19. Gajdusek, D. C. and Gibbs, C. J. Jr. (1971) Transmission of two subacute spongiform encephalopathies of man (Kuru and Creutzfeldt-Jakob disease) to new world monkeys. Nature 230, 588–591.

    Article  PubMed  CAS  Google Scholar 

  20. Tateishi, J. and Kitamoto, T. (1995) Inherited prion diseases and transmission to rodents. Brain Pathol. 5, 53–59.

    PubMed  CAS  Google Scholar 

  21. Tateishi, J., Kitamoto, T., Hoque, M. Z., and Furukawa, H. (1996) Experimental transmission of Creutzfeldt-Jakob disease and related diseases to rodents. Neurology 46, 532–537.

    PubMed  CAS  Google Scholar 

  22. Prusiner, S. B. (1982) Novel proteinaceous infectious particles cause scrapie. Science 216, 136–144.

    Article  PubMed  CAS  Google Scholar 

  23. Büeler, H., Fischer, M., Lang, Y., Bluethmann, H., Lipp, H.-P., DeArmond, S. J., et al. (1992) Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 356, 577–582.

    Article  PubMed  Google Scholar 

  24. Büeler, H., Aguzzi, A., Sailer, A., Greiner, R. A., Autenried, P., Aguet, M., and Weissmann, C. (1993) Mice devoid of PrP are resistant to scrapie. Cell 73, 1339–1347.

    Article  PubMed  Google Scholar 

  25. Brandner, S., Isenmann, S., Raeber, A., Fischer, M., Sailer, A., Kobayashi, Y., et al. (1996) Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature 379, 339–343.

    Article  PubMed  CAS  Google Scholar 

  26. Forloni, G., Angeretti, N., Chiesa, R., Monzani, E., Salmona, M., Bugiani, O., and Tagliavini, F. (1993) Neurotoxicity of a prion protein fragment. Nature 362, 543–546.

    Article  PubMed  CAS  Google Scholar 

  27. Ettaiche, M., Pichot, R., Vincent, J.-P., and Chabry, J. (2000) In vivo cytotoxicity of prion protein fragment PrP106-126. J. Biol. Chem. 275, 36487–36490.

    Article  PubMed  CAS  Google Scholar 

  28. Brown, D. R. (2000) PrPSc-like prion protein peptide inhibits the function of cellular prion protein. Biochem. J. 352, 511–518.

    Article  PubMed  CAS  Google Scholar 

  29. Brown, D. R., Schmidt, B., and Kretzschmar, H. A. (1996) Role of microglia and host prion protein in neurotoxicity of a prion protein fragment. Nature 380, 345–347.

    Article  PubMed  CAS  Google Scholar 

  30. Milhavet, O., McMahon, H. E., Rachidi, W., Nishida, N., Katamine, S., Mange, A., et al. (2000) Prion infection impairs the cellular response to oxidative stress. Proc Natl Acad Sci USA 97, 13937–13942.

    Article  PubMed  CAS  Google Scholar 

  31. Brown, D. R. (1999) Prion protein peptide neurotixicity can be mediated by astrocytes. J. Neurochem. 73, 1105–1113.

    Article  PubMed  CAS  Google Scholar 

  32. Fabrizi, C., Silei, V., Menegazzi, M., Salmona, M., Bugiani, O., Tagliavini, F., et al. (2001) The stimulation of inducible nitric-oxide synthase by the prion protein fragment 106–126 in human microglia is tumor necrosis factor-alpha-dependent and involves p38 mitogen-activated protein kinase. J. Biol. Chem. 276, 25692–25696.

    Article  PubMed  CAS  Google Scholar 

  33. Tranchant, C., Sergeant, N., Wattez, A., Mohr, M., Warter, J. M., and Delacourte, A. (1997) Neurofibrillary tangles in Gerstmann-Sträussler-Scheinker syndrome with the A117V prion gene mutation. J. Neurol. Neurosurg. Psychol. 63, 240–246.

    Article  CAS  Google Scholar 

  34. Zanusso, G., Petersen, R. B., Jin, T., Jing, Y., Kanoush, R., Ferrari, S., et al. (1999) Proteasomal degeneration and N-terminal protease resistance of the codon 145 mutant prion protein. J. Biol. Chem. 274, 23396–23404.

    Article  PubMed  CAS  Google Scholar 

  35. Ghetti, B., Piccardo, P., Spillantini, M. G., Ichimiya, Y., Porro, M., Perini, F., et al. (1996) Vascular variant of prion protein cerebral amyloidosis with tau-positive neurofibrillary tangles: the phenotype of the stop codon 145 mutation in PRNP. Proc. Natl. Acad. Sci. USA 93, 744–748.

    Article  PubMed  CAS  Google Scholar 

  36. Gambetti, P., Pettersen, R. B., Parchi, P., Chen, S. G., Capellari, S., Goldfarb, L., et al. (1999) Inherited prion disease, in Prion Biology and Disease (Prusiner, S. B., ed.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 121–136.

    Google Scholar 

  37. Brown, D. R. (2001) Prion and prejudice: normal protein at the synapse. Trends Neurosci. 24, 85–90.

    Article  PubMed  CAS  Google Scholar 

  38. Collinge, J. (2001) Prion diseases of humans and animals: their causes and molecular basis. Ann. Rev. Neurosci. 24, 519–550.

    Article  PubMed  CAS  Google Scholar 

  39. Beck, J. A., Mead, S., Campbell, T. A., Dickinson, A., Wientjens, D. P. M. W., Croes, E. A., et al. (2001) Two-octarepeat deletion of prion protein associated with rapidly progressive dementia. Neurology 57, 354–356.

    PubMed  CAS  Google Scholar 

  40. Glockshuber, R. (2001) Folding dynamics and energetics of recombinant prion proteins. Adv. Prot. Chem. 57, 83–105.

    Article  CAS  Google Scholar 

  41. Zhang, Y., Swietnicki, W., Zargorski, M. G., Surewicz, W. K., and Sönnichsen, F. D. (2000) Solution structure of the E200K variant of human prion protein. Implications for the mechanism of pathogenesis in familial prion disease. J. Biol. Chem. 275, 33650–33654.

    Article  PubMed  CAS  Google Scholar 

  42. Swietnicki, W., Petersen, R. B., Gambetti, P., and Surewicz, W. K. (1998) Familial mutations and the thermodynamic stability of the recombinant human prion protein. J. Biol. Chem. 273, 31048–31052.

    Article  PubMed  CAS  Google Scholar 

  43. Liemann, S. and Glockshuber, R. (1999) Influence of amino acid substitutions related to inherited human prion diseases on the thermodynamic stability of the cellular prion protein. Biochemistry 38, 3258–3267.

    Article  PubMed  CAS  Google Scholar 

  44. Riek, R., Wider, G., Billeter, M., Hornemann, S., Glockshuber, R., and Wüthrich, K. (1998) Prion protein NMR structure and familial human spongiform encephalopathies. Proc. Natl. Acad. Sci. USA 95, 11667–11672.

    Article  PubMed  CAS  Google Scholar 

  45. Cappai, R., Stewart, L., Jobling, M. F., Thyer, J. M., White, A. R., Beyreuther, K., et al. (1999) Familial prion disease mutation alters the secondary structure of recombinant mouse prion protein: implications for the mechanism of prion formation. Biochemistry 38, 3280–3284.

    Article  PubMed  CAS  Google Scholar 

  46. Meiner, Z., Gabzion, R., and Prusiner, S. B. (1997) Familial Creutzfeldt-Jakob disease. Codon 200 prion disease in Libyian Jews. Med. Baltimore 76, 227–237.

    Article  CAS  Google Scholar 

  47. Gabizon, R., Telling, G., Halimi, M., Kahana, I., and Prusiner, S. B. (1996) Insoluble wild-type and protease resistant mutant prion protein in brains aptients with inherited prion disease. Nature Med. 2, 59–64.

    Article  PubMed  CAS  Google Scholar 

  48. Lehmann, S. and Harris, D. A. (1995) A mutant prion protein displays an aberrant membrane association when expressed in cultured cells. J. Biol. Chem. 270, 24589–24597.

    Article  PubMed  CAS  Google Scholar 

  49. Lehmann, S. and Harries, D. A. (1996) Two mutant prion proteins expressed in cultured cells acquire biochemical properties reminiscent of the scrapie isoform. Proc. Natl. Acad. Sci. USA 93, 5610–5614.

    Article  PubMed  CAS  Google Scholar 

  50. Rosenmann, H., Talmor, G., Halimi, A., Gabizon, R., and Meiner, Z. (2001) Prion protein with an E200K mutation displays properties similar to those of the cellular isoform PrPc. J. Neurochem. 76, 1654–1662.

    Article  PubMed  CAS  Google Scholar 

  51. Ghetti, B., Piccardo, P., Frangione, B., Bugiani, O., Giaccone, G., Young, K., et al. (1996a) Prion protein amyloidosis. Brain Pathol. 6, 127–145.

    PubMed  CAS  Google Scholar 

  52. Parchi, P., Chen, S. G., Brown, P., Zou, W., Capellari, S., Budka, H., et al. (1998) Different patterns of truncated prion protein fragments correlate with distinct phenotypes in P102L Gerstmann-Straussler-Scheinker disease. Proc. Natl. Acad. Sci. USA 95, 8322–8327.

    Article  PubMed  CAS  Google Scholar 

  53. Piccardo, P., Liepnieks, J. J., William, A., Dlouhy, S. R., Farlow, M. R., Young, K., et al. (2001) Prion proteins with different conformations accumulate in Gerstmann-Sträusller-Scheinker disease caused by A117V and F198S mutations. Am. J. Pathol. 158, 2201–2207.

    PubMed  CAS  Google Scholar 

  54. Tagliavini, F., Lievens, P. M., Tranchant, C., Warter, J. M., Mohr, M., Giaccone, G., et al. (2001) A 7-kDa prion protein (PrP) fragment, an integral component of the PrP region required for infectivity, is the major amyloid protein in Gerstmann-Straussler-Scheinker disease A117V. J. Biol. Chem. 276, 6009–6015.

    Article  PubMed  CAS  Google Scholar 

  55. Tagliavini, F., Prelli, F., Ghiso, J., Bugiani, O., Serban, D., Prusiner, S. B., et al. (1991) Amyloid protein of Gerstmann-Straussler-Scheinker disease (Indiana kindred) is an 11 kd fragment of prion protein with an N-terminal glycine at codon 58. EMBO J. 10, 513–519.

    PubMed  CAS  Google Scholar 

  56. Chen, S. G., Teplow, D. B., Parchi, P., Teller, J. K., Gambetti, P., and Autilio-Gambetti, L. (1995) Truncated forms of the human prion protein in normal brain and in prion diseases. J. Biol. Chem. 270, 19137–19180.

    Google Scholar 

  57. Parchi, P., Zou, W., Wang, W., Brown, P., Capellari, S., Ghetti, B., et al. (2000) Genetic influence on the structural variations of the abnormal prion protein. Proc. Natl. Acad. Sci. USA 97, 10168–10172.

    Article  PubMed  CAS  Google Scholar 

  58. Inouye, H., Bond, J., Baldwin, M. A., Ball, H. L., Prusiner, S. B., and Kirschner, D. A. (2000) Structural changes in a hydrophobic domain of the prion protein induced by hydration and by Ala→Val and Pro→Leu substitutions. J. Mol. Biol. 300, 1283–1296.

    Article  PubMed  CAS  Google Scholar 

  59. Kareko, K., Ball, H. L., Wille, H., Zhang, H., Groth, D., Torchia, M., et al. (2000) A synthetic peptide initiates Gerstmann-Sträussler-Scheinler (GSS) disease in transgenic mice. J. Mol. Biol. 295, 997–1007.

    Article  CAS  Google Scholar 

  60. Hsiao, K. K., Scott, M., Foster, D., Groth, D. F., DeArmond, S. J., and Prusiner, S. B. (1990) Spontaneous neurodegeneration in transgenic mice with mutant prion protein. Science 250, 1587–90.

    Article  PubMed  CAS  Google Scholar 

  61. Manson, J., Jamieson, E., Baybutt, H., Tuzi, N. L., Barron, R., McConnell, I., et al. (1999) A single amino acid alteration (101L) introduction into murine PrP dramatically alters incubation time of transmissible spongiform encephalopathy. EMBO J. 18, 6855–6864.

    Article  PubMed  CAS  Google Scholar 

  62. Telling, G. C., M., S., Mastrianni, J., R., G., Torchia, M., Cohen, F. E., DeArmond, S. J., and Prusiner, S. B. (1995) Prion propagation in mice expressing human and chimeric PrP transgenes implicates the interaction of cellular PrP with another protein. Cell 83, 79–90.

    Article  PubMed  CAS  Google Scholar 

  63. Giese, A., Brown, D. R., Groschup, M. H., Feldmann, C., Haist, I., and Kretzschmar, H. A. (1998) Role of microglia in neuronal cell death in prion disease. Brain Pathol. 8, 449–457.

    Article  PubMed  CAS  Google Scholar 

  64. Rymer, D. L. and Good, T. A. (2000) The role of prion protein structure and aggregation in toxicity and membrane binding. J. Neurochem. 75, 2536–2545.

    Article  PubMed  CAS  Google Scholar 

  65. Kourie, J. I. and Culverson, A. (2000) Prion peptide fragment PrP[106–126] forms distinct cation channel types. J. Neurosci. Res. 62, 120–133.

    Article  PubMed  CAS  Google Scholar 

  66. Brown, D. R. and Mohn, C. M. (1999) Astrocytic glutamate uptake and prion protein expression. Glia 25, 282–292.

    Article  PubMed  CAS  Google Scholar 

  67. Brown, D. R., Herms, J., and Kretzschmar, H. A. (1994) Mouse cortical cells lacking cellular PrP survive in culture with a neurotoxic PrP fragment. Neuroreport 5, 2057–2060.

    Article  PubMed  CAS  Google Scholar 

  68. Brown, D. R., Herms, J. W., Schmidt, B., and Kretzschmar, H. A. (1997) Different requirements for the neurotoxicity of fragments of PrP and β-amyloid. Euro. J. Neurosci. 9, 1162–1169.

    Article  CAS  Google Scholar 

  69. Perovic, S., Schröder, H. C., Pergande, G., Ushijima, H., and Müller, W. E. G. (1997) Effect of flupirtine on Bcl-2 and glutathione level in neuronal cells treated in vitro with the prion protein fragment (PrP106-126). Exp. Neurol. 147, 518–524.

    Article  PubMed  CAS  Google Scholar 

  70. O’Donovan, C. N., Tobin, D., and Cotter, T. G. (2001) Prion protein fragment PrP106-126 induces apoptosis via mitochondrial disruption in human neuronal SH-SY5Y cells. J. Biol. Chem. 276, 43,516–43,523.

    CAS  Google Scholar 

  71. White, A. R., Guirguis, R., Brazier, M. W., Jobling, M. F., Hill, A. F., Beyreuther, K., et al. (2001) Sublethal concentrations of prion peptide PrP106-126 or the amyloid beta peptide of Alzheimer’s disease activates expression of proapoptotic markers in primary cortical neurons. Neurobiol. Dis. 8, 299–316.

    Article  PubMed  CAS  Google Scholar 

  72. Forloni, G., Angeretti, N., Malesani, P., Peressini, E., Rodriguez Martin, T., Della Torre, P., and Salmona, M. (1999) Influence of mutations associated with familial prion-related encephalopathies on biological activity of prion protein peptides. Ann. Neurol. 45, 489–494.

    Article  PubMed  CAS  Google Scholar 

  73. Brown, D. R. (2000) Altered toxicity of the prion protein peptide PrP106-126 carrying the A117V mutation. Biochem. J. 346, 785–791.

    Article  PubMed  CAS  Google Scholar 

  74. Brown, D. R., Schmidt, B., and Kretzschmar, H. A. (1998) A prion protein fragment interacts with PrP-deficient cells. J. Neurosci. Res. 52, 260–267.

    Article  PubMed  CAS  Google Scholar 

  75. McHattie, S. J., Brown, D. R., and Bird, M. M. (1999) Cellular uptake of the prion protein fragment PrP106-126 in vitro. J. Neurocytol. 28, 145–155.

    Article  Google Scholar 

  76. Johnson, B. D. and Byerly, L. (1993) A cytoskeletal mechanism for Ca2+ channel metabolic dependence and inactivation by intracellular Ca2+. Neuron 10, 797–804.

    Article  PubMed  CAS  Google Scholar 

  77. Daniels, M., Cereghetti, G. M., and Brown, D. R. (2001) Toxicity of novel C-terminal prion protein fragments and peptides harbouring disease-related C-terminal mutations. Eur. J. Biochem. 268, 6155–6164.

    Article  PubMed  CAS  Google Scholar 

  78. Stahl, N., Borchelt, D. R., Hsiao, K., and Prusiner, S. B. (1987) Scrapie prion protein contains a phosphatidylinositol glycolipid. Cell 51, 229–240.

    Article  PubMed  CAS  Google Scholar 

  79. Stahl, N., Borchelt, D. R., and Prusiner, S. B. (1990) Differential release of cellular and scrapie prion protein from cellular membranes of phosphatidylinositol specific phospholipase C. Biochemistry 29, 5405–5412.

    Article  PubMed  CAS  Google Scholar 

  80. Stahl, N., Baldwin, M. A., Hecker, R., Pan, K. M., Burlingame, A. L., and Prusiner, S. B. (1992) Glycosylinositol phospholipid anchors of the scrapie and cellular prion proteins contain sialic acid. Biochemistry 31, 5043–5053.

    Article  PubMed  CAS  Google Scholar 

  81. Borchelt, D. R., Rogers, M., Stahl, N., Telling, G., and Prusiner, S. B. (1993) Release of the cellular prion protein from cultured cells after loss of its glycoinositol phospholipid anchor. Glycobiology 3, 319–329.

    Article  PubMed  CAS  Google Scholar 

  82. Hegde, R. S., Mastrianni, J. A., Scott, M. R., Defea, K. D., Tremblay, P., Torchia, M., et al. (1998) A transmembrane form of the prion protein in neurodegenerative disease. Science 279, 827–834.

    Article  PubMed  CAS  Google Scholar 

  83. Hegde, R. S., Tremblay, P., Groth, D., DeArmond, S. J., Prusiner, S. B., and Lingappa, V. R. (1999) Transmissible and genetic prion diseases share a common pathway of neurodegeneration. Nature 402, 822–826.

    Article  PubMed  CAS  Google Scholar 

  84. Stewart, R. S. and Harris, D. A. (2000) Most pathogenic mutations do not alter the membrane topology of the prion protein. J. Biol. Chem. 276, 2212–2220.

    Article  PubMed  Google Scholar 

  85. Ivanova, L., Barmada, S., Kummer, T., and Harris, D. A. (2001) Mutant prion proteins are partially retained in the endoplasmic reticulum. J. Biol. Chem. 276, 42,409–42,421.

    CAS  Google Scholar 

  86. Negro, A., Ballarin, C., Bertoli, A., Massimino, M. L., and Sorgato, M. C. (2001) The metabolism and imaging in live cells of the bovine prion protein in the native form or carrying single amino acid substitutions. Mol. Cell Neurosci. 17, 521–538.

    Article  PubMed  CAS  Google Scholar 

  87. Pauly, P. C. and Harris, D. A. (1998) Copper stimulates endocytosis of the prion protein. J. Biol. Chem. 273, 33107–33110.

    Article  PubMed  CAS  Google Scholar 

  88. Perera, W. S. and Hooper, N. M. (2001) Ablation of the metal ion-induced endocytosis of the prion protein by disease-associated mutation of the octarepeat region. Curr. Biol. 11, 519–523.

    Article  PubMed  CAS  Google Scholar 

  89. Lee, K. S., Magalhães, A. C., Zanata, S. M., Brentani, R. R., Martins, V. R., and Prado, M. A. M. (2001) Internalization of mammalian fluorescent cellular prion protein and N-terminal deletion mutants in living cells. J. Neurochem. 78 79, 79–87.

    Article  Google Scholar 

  90. Caughey, B., Race, R. E., and Chesebro, B. (1990) Normal and scrapie-associated forms of prion protein differ in sensitivity to phospholipases and proteases in intact neuroblastoma cells. J. Virol. 64, 1093–1101.

    PubMed  CAS  Google Scholar 

  91. Harris, D. A. (1999) Cellular biology of prion diseases. Clin. Microbiol. Rev. 12, 429–444.

    PubMed  CAS  Google Scholar 

  92. Narwa, R. and Harris, D. A. (1999) Prion proteins carrying pathogenic mutations are resistant to phospholipase cleavage of the glycolipid anchors. Biochemistry 38, 8770–8777.

    Article  PubMed  CAS  Google Scholar 

  93. Saborio, G. P., Permanne, B., and Soto, C. (2001) Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature 411, 810–813.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Brown.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, D.R. Molecular advances in understanding inherited prion diseases. Mol Neurobiol 25, 287–302 (2002). https://doi.org/10.1385/MN:25:3:287

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:25:3:287

Index Entries

Navigation