Skip to main content
Log in

Caspase-dependent apoptotic pathways in CNS injury

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Recent studies have suggested a role for neuronal apoptosis in cell loss following acute CNS injury as well as in chronic neurodegeneration. Caspases are a family of cysteine requiring aspartate proteases with sequence similarity to Ced-3 protein of Caenorhabditis elegans. These proteases have been found to contribute significantly to the morphological and biochemical manifestations of apoptotic cell death. Caspases are translated as inactive zymogens and become active after specific cleavage. Of the 14 identified caspases, caspase-3 appears to be the major effector of neuronal apoptosis induced by a variety of stimuli. A role for caspase-3 in injury-induced neuronal cell death has been established using semispecific peptide caspase inhibitors. This article reviews the current literature relating to pathways regulating caspase activation in apoptosis associated with acute and chronic neurodegeneration, and suggests that identification of critical upstream caspase regulatory mechanisms may permit more effective treatment of such disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Faden A. I. (1996) Pharmacological treatment of central nervous system trauma. Pharmacol. Toxicol. 78, 12–17.

    Article  PubMed  CAS  Google Scholar 

  2. Trump B. F. and Bulger R. E. (1967) Studies of cellular injury in isolated flounder tubules. I. Correlation between morphology and function of control tubules and observations of autophagocytosis and mechanical cell damage. Lab. Invest. 16, 453–482.

    PubMed  CAS  Google Scholar 

  3. Yakovlev A. G., Knoblach S. M., Fan L., Fox G. B., Goodnight R., and Faden A. I. (1997) Activation of CPP32-like caspases contributes to neuronal apoptosis and neurological dysfunction after traumatic brain injury. J. Neurosci. 17, 7415–7424.

    PubMed  CAS  Google Scholar 

  4. Clark R. S., Kochanek P. M., Watkins S. C., et al. (2000) Caspase-3 mediated neuronal death after traumatic brain injury in rats. J. Neurochem. 74, 740–753.

    Article  PubMed  CAS  Google Scholar 

  5. Gillardon F., Bottiger B., Schmitz B., Zimmermann M., Hossmann K. A. (1997) Activation of CPP-32 protease in hippocampal neurons following ischemia and epilepsy. Brain Res. Mol. Brain Res. 50, 16–22.

    Article  PubMed  CAS  Google Scholar 

  6. Lipton P. (1999) Ischemic cell death in brain neurons. Physiol. Rev. 79, 1431–1568.

    PubMed  CAS  Google Scholar 

  7. Snider B. J., Gottron F. J., Choi D. W. (1999) Apoptosis and necrosis in cerebrovascular disease. Ann. NY Acad. Sci. 893, 243–253.

    Article  PubMed  CAS  Google Scholar 

  8. Yamashima T. (2000) Implication of cysteine proteases calpain, cathepsin and caspase in ischemic neuronal death of primates. Prog. Neurobiol. 62, 273–295.

    Article  PubMed  CAS  Google Scholar 

  9. Selznick L. A., Holtzman D. M., Han B. H., et al. (1999) In situ immunodetection of neuronal caspase-3 activation in Alzheimer disease. J. Neuropathol. Exp. Neurol. 58, 1020–1026.

    Article  PubMed  CAS  Google Scholar 

  10. Portera-Cailliau C., Hedreen J. C., Price D. L., Koliatsos V. E. (1995) Evidence for apoptotic cell death in Huntington disease and excitotoxic animal models. J. Neurosci. 15, 3775–3787.

    PubMed  CAS  Google Scholar 

  11. Jellinger K. A. (2000) Cell death mechanisms in Parkinson’s disease. J. Neural. Transm. 107, 1–29.

    Article  PubMed  CAS  Google Scholar 

  12. Hartmann A., Hunot S., Michel P. P., et al. (2000) Caspase-3: a vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson’s disease. Proc. Natl. Acad. Sci. USA 97, 2875–2880.

    Article  PubMed  CAS  Google Scholar 

  13. Martin L. J. (1999) Neuronal death in amyotrophic lateral sclerosis is apoptosis: possible contribution of a programmed cell death mechanism. J. Neuropathol. Exp. Neurol. 58, 459–471.

    PubMed  CAS  Google Scholar 

  14. Honig L. S. and Rosenberg R. N. (2000) Apoptosis and neurologic disease. Am. J. Med. 108, 317–330.

    Article  PubMed  CAS  Google Scholar 

  15. Wellington C. L. and Hayden M. R. (2000) Caspases and neurodegeneration: on the cutting edge of new therapeutic approaches. Clin. Genet. 57, 1–10.

    Article  PubMed  CAS  Google Scholar 

  16. Kerr J. F., Wyllie A. H., and Currie A. R. (1972) Apotosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257.

    PubMed  CAS  Google Scholar 

  17. Bredesen D. E. (1995) Neural apoptosis. Ann. Neurol 38, 839–851.

    Article  PubMed  CAS  Google Scholar 

  18. Wyllie A. H., Kerr J. F., and Currie A. R. (1980) Cell death: the significance of apoptosis. Int. Rev. Cytol. 68, 251–306.

    PubMed  CAS  Google Scholar 

  19. Horvitz H. R. (1999) Genetic control of programmed cell death in the nematode Caenorhabditis elegans. Cancer Res. 59, 1701s-1706s.

    PubMed  CAS  Google Scholar 

  20. Yuan J., Shaham S., Ledoux S., Ellis H. M., and Horvitz H. R. (1993) The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 75, 641–652.

    Article  PubMed  CAS  Google Scholar 

  21. Yuan J. and Horvitz H. R. (1992) The Caenorhabditis elegans cell death gene ced-4 encodes a novel protein and is expressed during the period of extensive programmed cell death. Development 116, 309–320.

    PubMed  CAS  Google Scholar 

  22. Hengartner M. O. and Horvitz H. R. (1994) Programmed cell death in Caenorhabditis elegans. Curr. Opin. Genet. Dev. 4, 581–586.

    Article  PubMed  CAS  Google Scholar 

  23. Hengartner M. O. (1999) Programmed cell death in the nematode C. elegans. Recent Prog. Horm. Res. 54, 213–222.

    PubMed  CAS  Google Scholar 

  24. Hengartner M. (1998) Apoptosis. Death by crowd control [comment]. Science 281, 1298–1299.

    Article  PubMed  CAS  Google Scholar 

  25. Alnemri E. S., Livingston D. J., Nicholson D. W., et al. (1996) Human ICE/CED-3 protease nomenclature [letter]. Cell 87, 171.

    Article  PubMed  CAS  Google Scholar 

  26. Thornberry N. A., Rano T. A., Peterson E. P., et al. (1997) A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J. Biol. Chem. 272, 17,907–17,911.

    Article  CAS  Google Scholar 

  27. Thornberry N. A. and Lazebnik Y. (1998) Caspases: enemies within. Science 281, 1312–1316.

    Article  PubMed  CAS  Google Scholar 

  28. Martin S. J. and Green D. R. (1995) Protease activation during apoptosis: death by a thousand cuts? Cell 82, 349–352.

    Article  PubMed  CAS  Google Scholar 

  29. Zhivotovsky B., Burgess D. H., and Orrenius S. (1996) Proteases in apoptosis. Experientia 52, 968–978.

    Article  PubMed  CAS  Google Scholar 

  30. Cohen G. M. (1997) Caspases: the executioners of apoptosis. Biochem. J. 326, 1–16.

    PubMed  CAS  Google Scholar 

  31. Miura M., Zhu H., Rotello R., Hartwieg E. A., and Yuan J. (1993) Induction of apoptosis in fibroblasts by IL-1 beta-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell 75, 653–660.

    Article  PubMed  CAS  Google Scholar 

  32. Fernandes-Alnemri T., Litwack G., and Alnemri E. S. (1994) CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-1 beta- converting enzyme. J. Biol. Chem. 269, 30,761–30,764.

    CAS  Google Scholar 

  33. Kuida K., Zheng T. S., Na S., et al. (1996) Decreased apoptosis in the brain and premature lethality in CPP32- deficient mice. Nature 384, 368–372.

    Article  PubMed  CAS  Google Scholar 

  34. Gottron F. J., Ying H. S., and Choi D. W. (1997) Caspase inhibition selectively reduces the apoptotic component of oxygen-glucose deprivation-induced cortical neuronal cell death. Mol. Cell Neurosci. 9, 159–169.

    Article  PubMed  CAS  Google Scholar 

  35. Fink K., Zhu J., Namura S., et al. (1998) Prolonged therapeutic window for ischemic brain damage caused by delayed caspase activation. J. Cereb. Blood Flow Metab. 18, 1071–1076.

    Article  PubMed  CAS  Google Scholar 

  36. Eldadah B. A., Yakovlev A. G., and Faden A. I. (1997) The role of CED-3-related cysteine proteases in apoptosis of cerebellar granule cells. J. Neurosci. 17, 6105–6113.

    PubMed  CAS  Google Scholar 

  37. Namura S., Zhu J., Fink K., et al. (1998) Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia. J. Neurosci. 18, 3659–3668.

    PubMed  CAS  Google Scholar 

  38. Clark R. S., Kochanek P. M., Chen M., et al. (1999) Increases in Bc1-2 and cleavage of caspase-1 and caspase-3 in human brain after head injury. FASEB J. 13, 813–821.

    PubMed  CAS  Google Scholar 

  39. Allen J. W., Knoblach S. M., and Faden A. I. (1999) Combined mechanical trauma and metabolic impairment in vitro induces NMDA receptor-dependent neuronal cell death and caspase-3-dependent apoptosis. FASEB J. 13, 1875–1882.

    PubMed  CAS  Google Scholar 

  40. Scaffidi C., Fulda S., Srinivasan A., et al. (1998) Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 17, 1675–1687.

    Article  PubMed  CAS  Google Scholar 

  41. Li P., Nijhawan D., Budihardjo I., et al. (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479–489.

    Article  PubMed  CAS  Google Scholar 

  42. Slee E. A., Harte M. T., Kluck R. M., et al. (1999) Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and-10 in a caspase-9-dependent manner. J. Cell Biol. 144, 281–292.

    Article  PubMed  CAS  Google Scholar 

  43. Ashkenazi A. and Dixit V. M. (1998) Death receptors: signaling and modulation. Science 281, 1305–1308.

    Article  PubMed  CAS  Google Scholar 

  44. Aravind L., Dixit V. M., and Koonin E. V. (1999) The domains of death: evolution of the apoptosis machinery. Trends Biochem Sci. 24, 47–53.

    Article  PubMed  CAS  Google Scholar 

  45. Nagata S. (1997) Apoptosis by death factor. Cell 88, 355–365.

    Article  PubMed  CAS  Google Scholar 

  46. Boldin M. P., Goncharov T. M., Goltsev Y. V., and Wallach D. (1996) Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell 85, 803–815.

    Article  PubMed  CAS  Google Scholar 

  47. Fernandes-Alnemri T., Armstrong R. C., Krebs J., et al. (1996) In vitro activation of CPP32 and Mch3 by Mch4, a novel human apoptotic cysteine protease containing two FADD-like domains. Proc. Natl. Acad. Sci. USA 93, 7464–7469.

    Article  PubMed  CAS  Google Scholar 

  48. Muzio M., Chinnaiyan A. M., Kischkel F. C., et al. (1996) FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 85, 817–827.

    Article  PubMed  CAS  Google Scholar 

  49. Kischkel F. C., Hellbardt S., Behrmann I., et al. (1995) Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J. 14, 5579–5588.

    PubMed  CAS  Google Scholar 

  50. Woo M., Hakem A., Elia A. J., et al. (1999) In vivo evidence that caspase-3 is required for Fas-mediated apoptosis of hepatocytes. J. Immunol. 163, 4909–4916.

    PubMed  CAS  Google Scholar 

  51. Li H., Zhu H., Xu C. J., and Yuan J. (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94, 491–501.

    Article  PubMed  CAS  Google Scholar 

  52. Murphy K. M., Streips U. N., and Lock R. B. (1999) Bax membrane insertion during Fas(CD95)-induced apoptosis precedes cytochrome c release and is inhibited by Bcl-2. Oncogene 18, 5991–5999.

    Article  PubMed  CAS  Google Scholar 

  53. Luo X., Budihardjo I., Zou H., Slaughter C., and Wang X. (1998) Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94, 481–490.

    Article  PubMed  CAS  Google Scholar 

  54. Kudla G., Montessuit S., Eskes R., et al. (2000) The destabilization of lipid membranes induced by the C-terminal fragment of caspase 8-cleaved bid is inhibited by the N-terminal fragment. J. Biol. Chem. 275, 22,713–22,718.

    Article  CAS  Google Scholar 

  55. Irmler M., Thome M., Hahne M., et al. (1997) Inhibition of death receptor signals by cellular FLIP [see comments]. Nature 388, 190–195.

    Article  PubMed  CAS  Google Scholar 

  56. Zou H., Henzel W. J., Liu X., Lutschg A., and Wang X. (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3 [see comments]. Cell 90, 405–413.

    Article  PubMed  CAS  Google Scholar 

  57. Zou H., Li Y., Liu X., and Wang X. (1999) An APAF-1. cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J. Biol. Chem. 274, 11,549–11,556.

    CAS  Google Scholar 

  58. Kulms D. and Schwarz T. (2000) Molecular mechanisms of UV-induced apoptosis. Photodermatol. Photoimmunol. Photomed. 16, 195–201.

    Article  PubMed  CAS  Google Scholar 

  59. Robertson J. D. and Orrenius S. (2000) Molecular mechanisms of apoptosis induced by cytotoxic chemicals. Crit. Rev. Toxicol. 30, 609–627.

    Article  PubMed  CAS  Google Scholar 

  60. Richter C. and Ghafourifar P. (1999) Ceramide induces cytochrome c release from isolated mitochondria. Biochem. Soc. Symp. 66, 27–31.

    PubMed  CAS  Google Scholar 

  61. Brown G. C. and Borutaite V. (1999) Nitric oxide, cytochrome c and mitochondria. Biochem. Soc. Symp. 66, 17–25.

    PubMed  CAS  Google Scholar 

  62. Hakem R., Hakem A., Duncan G. S., et al. (1998) Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 94, 339–352.

    Article  PubMed  CAS  Google Scholar 

  63. Cecconi F., Alvarez-Bolado G., Meyer B. I., Roth K. A., and Gruss P. (1998) Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell 94, 727–737.

    Article  PubMed  CAS  Google Scholar 

  64. Yoshida H., Kong Y. Y., Yoshida R., et al. (1998) Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell 94, 739–750.

    Article  PubMed  CAS  Google Scholar 

  65. Honarpour N., Du C., Richardson J. A., Hammer R. E., Wang X., and Herz J. (2000) Adult Apaf-1-deficient mice exhibit male infertility. Dev. Biol. 218, 248–258.

    Article  PubMed  CAS  Google Scholar 

  66. Kuida K., Haydar T. F., Kuan C. Y., et al. (1998) Reduced apoptosis and cytochrome c-mediated capsase activation in mice lacking caspase 9. Cell 94, 325–337.

    Article  PubMed  CAS  Google Scholar 

  67. Gonzalez-Garcia M., Perez-Ballestero R., Ding L., et al. (1994) bcl-XL is the major bcl-x mRNA form expressed during murine development and its product localizes to mitochondria. Development 120, 3033–3042.

    PubMed  CAS  Google Scholar 

  68. Motoyama N., Wang F., Roth K. A., et al. (1995) Massive cell death of immature hematopoietic cells and neurons in Bcl-x- deficient mice. Science 267, 1506–1510.

    Article  PubMed  CAS  Google Scholar 

  69. Pan G., O’Rourke K., and Dixit V. M. (1998) Caspase-9, Bcl-XL, and Apaf-1 form a ternary complex. J. Biol. Chem. 273, 5841–5845.

    Article  PubMed  CAS  Google Scholar 

  70. Moriishi K., Huang D. C., Cory S., and Adams J. M. (1999) Bcl-2 family members do not inhibit apoptosis by binding the caspase activator Apaf-1. Proc. Natl. Acad. Sci. USA 96, 9683–9688.

    Article  PubMed  CAS  Google Scholar 

  71. Hausmann G., O’Reilly L. A., van Driel R., et al. (2000) Pro-apoptotic apoptosis protease-activating factor 1 (Apaf-1) has a cytoplasmic localization distinct from Bcl-2 or Bcl-x(L). J. Cell. Biol. 149, 623–634.

    Article  PubMed  CAS  Google Scholar 

  72. Shimizu S., Konishi A., Kodama T., and Tsujimoto Y. (2000) BH4 domain of antiapoptotic Bcl-2 family members closes voltage-dependent anion channel and inhibits apoptotic motochondrial canges and cell death [published erratum appears in Proc. Natl. Acad. Sci. USA 2000 Aug 1;97(16):9347]. Proc. Natl. Acad. Sci. USA 97, 3100–3105.

    Article  PubMed  CAS  Google Scholar 

  73. Fujita N., Nagahashi A., Nagashima K., Rokudai S., and Tsuruo T. (1998) Acceleration of apoptotic cell death after the cleavae of Bcl-XL protein by caspase-3-like proteases. Oncogene 17, 1295–1304.

    Article  PubMed  CAS  Google Scholar 

  74. Hsu Y. T., Wolter K. G., and Youle R. J. (1997) Cytosol-to-membrane redistribution of Bax and Bcl-X(L) during apotposis. Proc. Natl. Acad. Sci. USA 94, 3668–3672.

    Article  PubMed  CAS  Google Scholar 

  75. Wolter K. G., Hsu Y. T., Smith C. L., Nechustan A., Xi X. G., and Youle R. J. (1997) Movement of Bax from the cytosol to mitochondria durin apoptosis. J. Cell Biol. 139, 1281–1292.

    Article  PubMed  CAS  Google Scholar 

  76. Goping I. S., Gross A., Lavoie J. N., et al. (1998) Regulated targeting of BAX to mitochondria. J. Cell Biol. 143, 207–215.

    Article  PubMed  CAS  Google Scholar 

  77. Chinnaiyan A. M. (1999) The apoptosome: heart and soul of the cell death machine. Neoplasia 1, 5–15.

    Article  PubMed  CAS  Google Scholar 

  78. Eskes R., Antonsson B., Osen-Sand A., et al. (1998) Bax-induced cytochrome C release from mitochondria is independent of the permeability transition pore but highly dependent on Mg2+ ions. J. Cell Biol. 143, 217–224.

    Article  PubMed  CAS  Google Scholar 

  79. Priault M., Chaudhuri B., Clow A., Camougrand N., and Manon S. (1999) Investigation of bax-induced release of cytochrome c from yeast mitochondria permeability of motochondrial membranes, role of VDAC and ATP requirement. Eur. J. Biochem. 260, 684–691.

    Article  PubMed  CAS  Google Scholar 

  80. Gross A., Jockel J., Wei M. C., and Korsmeyer S. J. (1998) Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis. EMBO J. 17, 3878–3885.

    Article  PubMed  CAS  Google Scholar 

  81. Shindler K. S., Latham C. B., and roth K. A. (1997) Bax deficiency prevents the increased cell death of immature neurons in bcl-x-deficient mice. J. Neurosci. 17, 3112–3119.

    PubMed  CAS  Google Scholar 

  82. Sedlak T. W., Oltvai Z. N., Yang E., et al. (1995) Multiple Bcl-2 family members demonstrate selective dimerizations with Bax. Proc. Natl. Acad. Sci. USA 92, 7834–7838.

    Article  PubMed  CAS  Google Scholar 

  83. Knudson C. M., Tung K. S., tourtellotte W. G., Brown G. A., and Korsmeyer S. J. (1995) Baxdeficient mice with lymphoid hyperplasia and male erm cell death. Science 270, 96–99.

    Article  PubMed  CAS  Google Scholar 

  84. Deckwerth T. L., Elliott J. L., Knudson C. M., Johnson E. M., Jr., Snider W. D., and Korsmeyer S. J. (1996) BAX is required for neuronal death after trophic factor deprivation and during development. Neuron 17, 401–411.

    Article  PubMed  CAS  Google Scholar 

  85. Minn A. J., Boise L. H., and Thompson C. B. (1996) Bcl-x(S) anatagonizes the protective effects of Bcl-x(L). J. Biol. Chem. 271, 6306–6312.

    Article  PubMed  CAS  Google Scholar 

  86. Yang X. F., Weber G. F., and Cantor H. (1997) A novel Bcl-x isoform connected to the T cell receptor regulates apoptosis in T cells. Immunity 7, 629–639.

    Article  PubMed  CAS  Google Scholar 

  87. Srinivasula S. M., Ahmad M., Guo Y., et al. (1999) Identification of an endogenous dominant-negative short isoform of caspase-9 that can regulate apoptosis. Cancer Res. 59, 999–1002.

    PubMed  CAS  Google Scholar 

  88. Benedict M. A., Hu Y., Inohara N., and Nunez G. (2000) Expression and functional analysis of Apaf-1 isoforms. Extra Wd-40 repeat is required for cytochrome c binding and regulated activation of procaspase-9. J. Biol. Chem. 275, 8461–8468.

    Article  PubMed  CAS  Google Scholar 

  89. Jiang Z. H. and Wu J. Y. (1999) Alternative splicing and programmed cell death. Proc. Soc. Exp. Biol. Med. 220, 64–72.

    Article  PubMed  CAS  Google Scholar 

  90. Cardone M. H., Roy N., Stennicke H. R., et al. (1998) Regulation of cell death protease caspase-9 by phosphorylation [see comments]. Science 282, 1318–1321.

    Article  PubMed  CAS  Google Scholar 

  91. Fujita E. Jinbo A., Matuzaki H., Konishi H., Kikkawa U., and Momoi T. (1999) Akt phosphorylation site found in human caspase-9 is absent in mouse caspase-9. Biochem. Biophys. Res. Commun. 264, 550–555.

    Article  PubMed  CAS  Google Scholar 

  92. Zhou H. Li X. M., Meinkoth J., and Pittman R. N. (2000) Akt regulates cell survival and apoptosis at a postmitochondrial level [In Process Citation]. J. Cell Biol. 151, 483–494.

    Article  PubMed  CAS  Google Scholar 

  93. Datta S.R., Dudek H., Tao X., et al. (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91, 231–241.

    Article  PubMed  CAS  Google Scholar 

  94. Wang H. G., Pathan N., Ethell I. M., et al. (1999) Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Science 284, 339–343.

    Article  PubMed  CAS  Google Scholar 

  95. Ayllon V., Martinez A. C., Garcia A., Cayla X., and Rebollo A. (2000) Protein phosphatase 1alpha is a Ras-activated Bad phosphatase that regulates interleukin-2 deprivation-induced apoptosis. EMBO J. 19, 2237–2246.

    Article  PubMed  CAS  Google Scholar 

  96. Yang E., Zha J., Jockel J., Boise L. H., Thompson C. B., and Korsmeyer S. J. (1995) Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell 80, 285–291.

    Article  PubMed  CAS  Google Scholar 

  97. Francois F. and Grimes M. L. (1999) Phosphorylation-dependent Akt cleavage in neural cell in vitro reconstitution of apoptosis. J. Neurochem. 73, 1773–1776.

    Article  PubMed  CAS  Google Scholar 

  98. Pandey P., Saleh A., Nakazawa A., et al. (2000) Negative regulation of cytochrome c-mediated oligomerization of apaf-1 and activation of procaspase-9 by heat shock protein 90 [In Process Citation]. EMBO J. 19, 4310–4322.

    Article  PubMed  CAS  Google Scholar 

  99. Beere H. M., Wolf B. B., Cain K., et al. (2000) Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat. Cell Biol. 2, 469–475.

    Article  PubMed  CAS  Google Scholar 

  100. Bruey J. M., Ducasse C., Bonniaud P., et al. (2000) Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat. Cell Biol. 2, 645–652.

    Article  PubMed  CAS  Google Scholar 

  101. Hay B. A. (2000) Understanding IAP function and regulation: a view from Drosophila. Cell Death Differ 7, 1045–1056.

    Article  PubMed  CAS  Google Scholar 

  102. Du C., Fang M., Li Y., Li L., and Wang X. (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating 1AP inhibition. Cell 102, 33–42.

    Article  PubMed  CAS  Google Scholar 

  103. Nakagawa T., Zhu H., Morishima N., et al. (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403, 98–103.

    Article  PubMed  CAS  Google Scholar 

  104. Bitko V. and Barik S. (2001) An endoplasmic reticulum-specific stress-activated caspase (caspase-12) is implicated in the apoptosis of A549 epithelial cells by respiratory syncytial virus. J. Cell Biochem. 80, 441–454.

    Article  PubMed  CAS  Google Scholar 

  105. Nakagawa T. and Yuan J. (2000) Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J. Cell Biol. 150, 887–894.

    Article  PubMed  CAS  Google Scholar 

  106. Wang S., Miura M., Jung Y. K., Zhu H., Li E., and Yuan J. (1998) Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell 92, 501–509.

    Article  PubMed  CAS  Google Scholar 

  107. Kang S. J., Wang S., Hara H., et al. (2000) Dual role of caspase-11 in mediating activation of caspase-1 and caspase-3 under pathological conditions. J. Cell Biol. 149, 613–622.

    Article  PubMed  CAS  Google Scholar 

  108. Schotte P., Van Criekinge W., Van de Craen M., et al. (1998) Cathepsin B-mediated activation of the proinflammatory caspase-11. Biochem. Biophys. Res. Commun. 251, 379–387.

    Article  PubMed  CAS  Google Scholar 

  109. Hall K. E. and Wiley J. W. (1998) Neural injury, repair and adaptation in the GI tract. I. New insights into neuronal injury: a cautionary tale. Am. J. Physiol. 274, G978–983.

    PubMed  CAS  Google Scholar 

  110. Krajewski S., Krajewska M., Ellerby L. M., et al. (1999) Release of caspase-9 from mitochondria during neuronal apoptosis and cerebral ischemia. Proc. Natl. Acad. Sci. USA 96, 5752–5757.

    Article  PubMed  CAS  Google Scholar 

  111. Morita-Fujimura Y., Fujimura M., Kawase M., Chen S. F., and Chan P. H. (1999) Release of mitochondrial cytochrome c and DNA fragmentation after cold injury-induced brain trauma in mice: possible role in neuronal apoptosis. Neurosci. Lett. 267, 201–205.

    Article  PubMed  CAS  Google Scholar 

  112. Buki A., Okonkwo D. O., Wang K. K., and Povlishock J. T. (2000) Cytochrome c release and caspase activation in traumatic axonal injury. J. Neurosci. 20, 2825–2834.

    PubMed  CAS  Google Scholar 

  113. Tamatani M., Mitsuda N., Matsuzaki H., et al. (2000) A pathway of neuronal apoptosis induced by hhpoxia/reoxygenation: roles of nuclear factor-kappaB and Bcl-2. J. Neurochem. 75, 683–693.

    Article  PubMed  CAS  Google Scholar 

  114. Ouyang Y. B., He Q. P., Li P. A., Janelidze S., Wang G. X., and Siesjo B. K. (2000) Is neuronal injury caused by hypoglycemic coma of the necrotic or apoptotic type? [In Process Citation]. Neurochem. Res. 25, 661–667.

    Article  PubMed  CAS  Google Scholar 

  115. Deshmukh M., Kuida K., and Johnson E. M., Jr. (2000) Caspase inhibition extends the commitment to neuronal death beyond cytochrome c release to the point of mitochondrial depolarization. J. Cell Biol. 150, 131–143.

    Article  PubMed  CAS  Google Scholar 

  116. Knoblach S. M., Fan L., Huang X., Krajewski S., Reed J. C., and Faden A. I. (2000) Activation of caspases 3 and 9 after traumatic brain injury in the rat: treatment with a pan-caspase inhibitor improves outcome. Soc. Neurosci. Abst.

  117. Endres M., Namura S., Shimizu-Sasamata M., et al. (1998) Attenuation of delayed neuronal death after mild focal ischemia in mice by inhibition of the caspase family. J. Cereb. Blood Flow Metab. 18, 238–247.

    Article  PubMed  CAS  Google Scholar 

  118. Bossenmeyer-Pourie C., Koziel V., and Daval J. L. (1999) CPP32/CASPASE-3-like proteases in hypoxia-induced apoptosis indeveloping brain neurons. Brain Res. Mol. Brain Res. 71, 225–237.

    Article  PubMed  CAS  Google Scholar 

  119. Kondratyev A. and Gale K. (2000) Intracerebral injection of caspase-3 inhibitor prevents neuronal apoptosis after kainic acid-evoked status epilepticus. Brain Res. Mol. Brain Res. 75, 216–224.

    Article  PubMed  CAS  Google Scholar 

  120. Kermer P., Klocker N., and Bahr M. (1999) Long-term effect of inhibition of ced 3-like caspases on the survival of axotomized retinal ganglion cells in vivo. Exp. Neurol. 158, 202–205.

    Article  PubMed  CAS  Google Scholar 

  121. Springer J. E., Azbill R. D., and Knapp P. E. (1999) Activation of the caspase-3 apoptotic cascade in traumatic spinal cord injury. Nat. Med. 5, 943–946.

    Article  PubMed  CAS  Google Scholar 

  122. Sanchez I., Xu C. J., Juo P., Kakizaka A., Blenis J., and Yuan J. (1999) Caspase-8 is required for cell death induced by expanded polyglutamine repeats [see comments]. Neuron 22, 623–633.

    Article  PubMed  CAS  Google Scholar 

  123. Ivins K. J., Thornton P. L., Rohn T. T., and Cotman C. W. (1999) Neuronal apoptosis induced by beta-amyloid is mediated by caspase-8. Neurobiol. Dis. 6, 440–449.

    Article  PubMed  CAS  Google Scholar 

  124. Felderhoff-Mueser U., Taylor D. L., Greenwood K., et al. (2000) Fas/CD95/APO-1 can function as a death receptor for neuronal cells in vitro and in vivo and is upregulated following cerebral hypoxic-ischemic injury to the developing rat brain. Brain Pathol. 10, 17–29.

    Article  PubMed  CAS  Google Scholar 

  125. Matsushita K., Wu Y., Qiu J., et al. (2000) Fas receptor and neuronal cell death after spinal cord ischemia. J. Neurosci. 20, 6879–6887.

    PubMed  CAS  Google Scholar 

  126. Velier J. J., Ellison J. A., Kikly K. K., Spera P. A., Barone F. C., and Feuerstein G. Z. (1999) Caspase-8 and caspase-3 are expressed by different populations of cortical neurons undergoing delayed cell death after focal stroke in the rat. J. Neurosci. 19, 5932–5941.

    PubMed  CAS  Google Scholar 

  127. Bittigau P., Sifringer M., Pohl D., et al. (1999) Apoptotic neurodegeneration following trauma is markedly enhanced in the immature brain. Ann. Neurol. 45, 724–735.

    Article  PubMed  CAS  Google Scholar 

  128. Pohl D., Bittigau P., Ishimaru M. J., et al. (1999) N-Methyl-D-aspartate antagonists and apoptotic cell death triggered by head trauma in developing rat brain. Proc. Natl. Acad. Sci. USA 96, 2508–2513.

    Article  PubMed  CAS  Google Scholar 

  129. de Bilbao F., Guarin E., Nef P., Vallet P., Giannakopoulos P., and Dubois-Dauphin M. (1999) Postnatal distribution of cpp32/caspase 3 mRNA in the mouse central nervous system: an in situ hybridization study. J. Comp. Neurol. 409, 339–357.

    Article  PubMed  Google Scholar 

  130. Hu B. R., Liu C. L., Ouyang Y., Blomgren K., and Siesjo B. K. (2000) Involvement of caspase-3 in cell death after hypoxia-ischemia declines during brain maturation. J. Cereb. Blood Flow Metab. 20, 1294–1300.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan I. Faden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yakovlev, A.G., Faden, A.I. Caspase-dependent apoptotic pathways in CNS injury. Mol Neurobiol 24, 131–144 (2001). https://doi.org/10.1385/MN:24:1-3:131

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:24:1-3:131

Index Entries

Navigation