Skip to main content
Log in

Regulation of feeding-associated peptides and receptors by nicotine

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Although numerous epidemiological studies have provided convincing evidence for the inverse association between tobacco smoking and body weight, the molecular mechanisms underlying this relationship are not well-understood. Nicotine, as a potent secretagogue, could be expected to influence the levels and expression of many classes of neurotransmitters, as well as of cell-membrane constituents linked to neurotransmission, including signal transducers and related effectors. A potentially major group of candidate molecules that could be involved in feeding-related actions of nicotine are the numerous neuropeptides and peptide hormones shown in the past two decades to regulate food intake and energy expenditure. These could include neuropeptide Y (NPY), orexins, leptins, and uncoupling proteins (UCPs). Some of these peptides were already shown to respond to nicotine treatment in terms of regulation of levels and of activity at the level of cell-membrane receptors. The primary objective of this review is to summarize our current understanding of the regulatory effects of nicotine on the food intake and energy expenditure as related to the expression levels of leptin, NPY, orexin, uncoupling proteins, and of NPY and orexin receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benowitz N. L. (1997) The role of nicotine in smoking-related cardiovascular disease. Prev. Med. 26, 412–417.

    PubMed  CAS  Google Scholar 

  2. Krupski W. C. (1991) The peripheral vascular consequences of smoking. Ann. Vasc. Surg. 5, 291–304.

    PubMed  CAS  Google Scholar 

  3. Taylor B. V., Oudit G. Y., Kalman P. G., and Liu P. (1998) Clinical and pathophysiological effects of active and passive smoking on the cardiovascular system. Can. J. Cardiol. 14, 1129–1139.

    PubMed  CAS  Google Scholar 

  4. Villablanca A. C., McDonald J. M., and Rutledge J. C. (2000) Smoking and cardiovascular disease. Clin. Chest. Med. 21, 159–172.

    PubMed  CAS  Google Scholar 

  5. Birtwistle J. and Hall K. (1996) Does nicotine have beneficial effects in the treatment of certain diseases? Br. J. Nurs. 5, 1195–1202.

    Google Scholar 

  6. Lee P. N. (1994) Smoking and Alzheimer’s disease: a review of the epidemiological evidence. Neuroepidemiology 13, 131–144.

    PubMed  Google Scholar 

  7. Lopez-Arrieta J. M., Rodriguez J. L., and Sanz F. (2000) Nicotine for Alzheimer’s disease. Cochrane Database Syst. Rev. 2, CD001749.

  8. Balfour D. J. and Ridley D. L. (2000) The effects of nicotine on neural pathways implicated in depression: a factor in nicotine addiction? Pharmacol. Biochem. Behav. 66, 79–85.

    PubMed  CAS  Google Scholar 

  9. Benowitz N. L. (1999) Nicotine addiction. Prim. Care 26, 611–631.

    PubMed  CAS  Google Scholar 

  10. Batel P. (2000) Addiction and schizophrenia. Eur. Psychiatry 15, 115–122.

    PubMed  CAS  Google Scholar 

  11. Covey L. S., Glassman A. H., and Stetner F. (1998) Cigarette smoking and major depression. J. Addict. Dis. 17, 35–46.

    PubMed  CAS  Google Scholar 

  12. Dalack G. W. and Meador-Woodruff J. H. (1996) Smoking, smoking withdrawal and schizophrenia: case reports and a review of the literature. Schizophr. Res. 22, 133–141.

    Google Scholar 

  13. Lyon F. R. (1999) A review of the effects of nicotine on schizophrenia and antipsychotic medications. Psychiatr. Serv. 50, 1346–1350.

    PubMed  CAS  Google Scholar 

  14. USDHHS (1988) The health consequences of smoking: nicotine addiction. A report of the Surgeon general. US Government Printing Office DHHS Publication No. (CDC):88-8406.

  15. Pomerleau C. S. and Kurth C. L. (1996) Willingness of female smokers to tolerate postcessation weight gain. J. Subst. Abuse. 8, 371–378.

    Google Scholar 

  16. Ghosheh O., Dwoskin L. P., Li W. K., and Crooks P. A. (1999) Residence times and half-lives of nicotine metabolites in rat brain after acute peripheral administration of [2′-(14)C]nicotine. Drug. Metab. Dispos. 27, 1448–1455.

    PubMed  CAS  Google Scholar 

  17. Anderson D. J. and Arneric S. P. (1994) Nicotinic receptor binding of [3H]cytisine, [3H]nicotine and [3H]methylcarbamylcholine in rat brain. Eur. J. Pharmacol. 253, 261–267.

    PubMed  CAS  Google Scholar 

  18. Pool W. F. and Crooks P. A. (1985) Biotransformation of primary nicotine metabolites. I. In vivo metabolism of R-(+)-[14C-NCH3]N-methylnicotinium ion in the guinea pig. Drug. Metab. Dispos. 13, 578–581.

    PubMed  CAS  Google Scholar 

  19. Siegel R. A., Andersson K., Fuxe K., Eneroth P., Lindbom L. O., and Agnati L. F. (1983) Rapid and discrete changes in hypothalamic catecholamine nerve terminal systems induced by audiogenic stress, and their modulation by nicotine-relationship to neuroendocrine function. Eur. J. Pharmacol. 91, 49–56.

    PubMed  CAS  Google Scholar 

  20. Sakurai Y., Takano Y., Kohjimoto Y., Honda K., and Kamiya H. O. (1982) Enhancement of [3H]dopamine release and its [3H]metabolites in rat striatum by nicotinic drugs. Brain Res. 242, 99–106.

    PubMed  CAS  Google Scholar 

  21. Li X., Rainnie D. G., McCarley R. W., and Greene R. W. (1998) Presynaptic nicotinic receptors facilitate monoaminergic transmission. J. Neurosci. 18, 1904–1912.

    PubMed  CAS  Google Scholar 

  22. Sorenson E. M., Shiroyama T., and Kitai S. T. (1998) Postsynaptic nicotinic receptors on dopaminergic neurons in the substantia nigra pars compacta of the rat. Neuroscience 87, 659–673.

    PubMed  CAS  Google Scholar 

  23. Fu Y., Matta S. G., Valentine J. D., and Sharp B. M. (1998) Desensitization and resensitization of norepinephrine release in the rat hippocampus with repeated nicotine administration. Neurosci. Lett. 241, 147–150.

    PubMed  CAS  Google Scholar 

  24. Kirch D. G., Gerhardt G. A., Shelton R. C., Freedman R., and Wyatt R. J. (1987) Effect of chronic nicotine administration on monoamine and monoamine metabolite concentrations in rat brain. Clin. Neuropharmacol. 10, 376–383.

    PubMed  CAS  Google Scholar 

  25. Reuben M., Louis M., and Clarke P. B. (1998) Persistent nicotinic blockade by chlorisondamine of noradrenergic neurons in rat brain and cultured PC12 cells. Br. J. Pharmacol. 125, 1218–1227.

    PubMed  CAS  Google Scholar 

  26. Iversen L. L., Lee C. M., Gilbert R. F., Hunt S., and Emson P. C. (1980) Regulation of neuropeptide release. Proc. R. Soc. Lond. B. Biol. Sci. 210, 91–111.

    PubMed  CAS  Google Scholar 

  27. Iversen L. L. (1984) The Ferrier Lecture, (1983). Amino acids and peptides: fast and slow chemical signals in the nervous system? Proc. R. Soc. Lond. B. Biol. Sci. 221, 245–260.

    PubMed  CAS  Google Scholar 

  28. Marty M. A., Erwin V. G., Cornell K., and Zgombick J. M. (1985) Effects of nicotine on beta-endorphin, alpha MSH, and ACTH secretion by isolated perfused mouse brains and pituitary glands, in vitro. Pharmacol. Biochem. Behav. 22, 317–325.

    PubMed  CAS  Google Scholar 

  29. Matta S. G., Foster C. A., and Sharp B. M. (1993) Nicotine stimulates the expression of cFos protein in the parvocellular paraventricular nucleus and brainstem catecholaminergic regions. Endocrinology 132, 2149–2156.

    PubMed  CAS  Google Scholar 

  30. Matta S. G., Foster C. A., and Sharp B. M. (1993) Selective administration of nicotine into catecholaminergic regions of rat brainstem stimulates adrenocorticotropin secretion. Endocrinology 133, 2935–2942.

    PubMed  CAS  Google Scholar 

  31. Zaninetti M., Blanchet C., Tribollet E., Bertrand D., and Raggenbass M. (2000) Magnocellular neurons of the rat supraoptic nucleus are endowed with functional nicotinic acetylcholine receptors. Neuroscience 95, 319–323.

    PubMed  CAS  Google Scholar 

  32. Kasting N. W. (1988) Simultaneous and independent release of vasopressin and oxytocin in the rat. Can. J. Physiol. Pharmacol. 66, 22–26.

    PubMed  CAS  Google Scholar 

  33. Maitra S. C., Chakraverty K., Shipstone A. C., and Kar K. (1983) Ultrastructural changes in the neural lobe of the rat pituitary following nicotine pretreatment. Exp. Clin. Endocrinol. 82, 376–379.

    PubMed  CAS  Google Scholar 

  34. Iselin C. E., Martin J. L., Magistretti P. J., and Ferrero J. D. (1988) Stimulation by nicotine of enteric inhibitory nerves and release of vasoactive intestinal peptide in the taenia of the guinea-pig caecum. Eur. J. Pharmacol. 148, 179–186.

    PubMed  CAS  Google Scholar 

  35. Lapchak P. A. and Beaudet A. (1990) Cholinergic regulation of vasoactive intestinal peptide content and release in rat frontal cortex and hippocampus. J. Neurochem. 55, 1340–1345.

    PubMed  CAS  Google Scholar 

  36. Karlsson S. and Ahren B. (1998) Insulin and glucagon secretion by ganglionic nicotinic activation in adrenalectomized mice. Eur. J. Pharmacol. 342, 291–295.

    PubMed  CAS  Google Scholar 

  37. Andersson K., Fuxe K., Eneroth P., and Agnati L. F. (1982) Involvement of cholinergic nicotine-like receptors as modulators of amine turnover in various types of hypothalamic dopamine and noradrenaline nerve terminal systems and of prolactin, LH, FSH and TSH secretion in the castrated male rat. Acta. Physiol. Scand. 116, 41–50.

    Article  PubMed  CAS  Google Scholar 

  38. Andersson K., Siegel R., Fuxe K., and Eneroth P. (1983) Intravenous injections of nicotine induce very rapid and discrete reductions of hypothalamic catecholamine levels associated with increases of ACTH, vasopressin and prolactin secretion. Acta. Physiol. Scand. 118, 35–40.

    PubMed  CAS  Google Scholar 

  39. Fuxe K., Andersson K., Eneroth P., Harfstrand A., and Agnati L. F. (1989) Neuroendocrine actions of nicotine and of exposure to cigarette smoke: medical implications. Psychoneuroen-docrinology 14, 19–41.

    CAS  Google Scholar 

  40. Karlin A. and Akabas M. H. (1995) Toward a structural basis for the function of nicotinic acetylcholine receptors and their cousins. Neuron 15, 1231–1244.

    PubMed  CAS  Google Scholar 

  41. Kao P. N. and Karlin A. (1986) Acetylcholine receptor binding site contains a disulfide cross-link between adjacent half-cystinyl residues. J. Biol. Chem. 261, 8085–8088.

    PubMed  CAS  Google Scholar 

  42. Changeux J. P., Bertrand D., Corringer P. J., Dehaene S., Edelstein S., Lena C., et al. (1998) Brain nicotinic receptors: structure and regulation, role in learning and reinforcement. Brain Res. Brain. Res. Rev. 26, 198–216.

    PubMed  CAS  Google Scholar 

  43. Alkondon M. and Albuquerque E. X. (1993) Diversity of nicotinic acetylcholine receptors in rat hippocampal neurons. I. Pharmacological and functional evidence for distinct structural subtypes. J. Pharmacol. Exp. Ther. 265, 1455–1473.

    PubMed  CAS  Google Scholar 

  44. Zoli M., Lena C., Picciotto M. R., and Changeux J. P. (1998) Identification of four classes of brain nicotinic receptors using beta2 mutant mice. J. Neurosci. 18, 4461–4472.

    PubMed  CAS  Google Scholar 

  45. Drisdel R. C. and Green W. N. (2000) Neuronal alpha-bungarotoxin receptors are alpha7 subunit homomers. J. Neurosci. 20, 133–139.

    PubMed  CAS  Google Scholar 

  46. Broide R. S. and Leslie F. M. (1999) The alpha7 nicotinic acetylcholine receptor in neuronal plasticity. Mol. Neurobiol. 20, 1–16.

    PubMed  CAS  Google Scholar 

  47. Galzi J. L. and Changeux J. P. (1995) Neuronal nicotinic receptors: molecular organization and regulations. Neuropharmacology 34, 563–582.

    PubMed  CAS  Google Scholar 

  48. Vidal C. (1996) Nicotinic receptors in the brain. Molecular biology, function, and therapeutics. Mol. Chem. Neuropathol. 28, 3–11.

    Google Scholar 

  49. Green M. S. and Harari G. (1995) A prospective study of the effects of changes in smoking habits on blood count, serum lipids and lipoproteins, body weight and blood pressure in occupationally active men. The Israeli CORDIS Study [see comments]. J. Clin. Epidemiol. 48, 1159–1166.

    PubMed  CAS  Google Scholar 

  50. Grinker J. A., Tucker K., Vokonas P. S., and Rush D. (1995) Body habitus changes among adult males from the normative aging study: relations to aging, smoking history and alcohol intake. Obes. Res. 3, 435–446.

    PubMed  CAS  Google Scholar 

  51. Williamson D. F., Madans J., Anda R. F., Kleinman J. C., Giovino G. A., and Byers T. (1991) Smoking cessation and severity of weight gain in a national cohort [see comments]. N. Engl. J. Med. 324, 739–745.

    Article  PubMed  CAS  Google Scholar 

  52. Richmond R. L., Kehoe L., and Webster I. W. (1993) Weght change after smoking cessation in general practice. Med. J. Aust. 158, 821–822.

    PubMed  CAS  Google Scholar 

  53. Caan B., Coates A., Schaefer C., Finkler L., Sternfeld B., and Corbett K. (1996) Women gain weight 1 year after smoking cessation while dietary intake temporarily increases. J. Am. Diet. Assoc. 96, 1150–1155.

    Google Scholar 

  54. Kawachi I., Troisi R. J., Rotnitzky A. G., Coakley E. H., and Colditz G. A. (1996) Can physical activity minimize weight gain in women after smoking cessation? Am. J. Public Health 86, 999–1004.

    Google Scholar 

  55. Swan G. E. and Carmelli D. (1995) Characteristics associated with excessive weight gain after smoking cessation in men. Am. J. Public Health 85, 73–77.

    PubMed  CAS  Google Scholar 

  56. Grunberg N. E. (1991) Smoking cessation and weight gain [editorial; comment]. N. Engl. J. Med. 324, 768–769.

    Article  PubMed  CAS  Google Scholar 

  57. Li M. D., Kane J. K., Parker S. L., McAllen K., Matta S. G., and Sharp B. M. (2000) Nicotine administration enhances NPY expression in the rat hypothalamus. Brain Res. 867, 157–164.

    PubMed  CAS  Google Scholar 

  58. Bowen D. J., Eury S. E., and Grunberg N. E. (1986) Nicotine’s effects on female rats’ body weight: caloric intake and physical activity. Pharmacol. Biochem. Behav. 25, 1131–1136.

    PubMed  CAS  Google Scholar 

  59. Frankish H. M., Dryden S., Wang Q., Bing C., MacFarlane I. A., and Williams G. (1995) Nicotine administration reduces neuropeptide Y and neuropeptide Y mRNA concentrations in the rat hypothalamus: NPY may mediate nicotine’s effects on energy balance. Brain Res. 694, 139–146.

    PubMed  CAS  Google Scholar 

  60. Grunberg N. E., Bowen D. J., and Winders S. E. (1986) Effects of nicotine on body weight and food consumption in female rats. Psychopharmacology 90, 101–105.

    PubMed  CAS  Google Scholar 

  61. Hofstetter A., Schutz Y., Jequier E., and Wahren J. (1986) Increased 24-hour energy expenditure in cigarette smokers. N. Engl. J. Med. 314, 79–82.

    Article  PubMed  CAS  Google Scholar 

  62. Perkins K. A., Epstein L. H., Marks B. L., Stiller R. L., and Jacob R. G. (1989) The effect of nicotine on energy expenditure during light physical activity. N. Engl. J. Med. 320, 898–903.

    Article  PubMed  CAS  Google Scholar 

  63. Sztalryd C., Hamilton J., Horwitz B. A., Johnson P., and Kraemer F. B. (1996) Alterations of lipolysis and lipoprotein lipase in chronically nicotine-treated rats. Am. J. Physiol. 270, E215–223.

    Google Scholar 

  64. Zhang Y., Proenca R., Maffei M., Barone M., Leopold L., and Friedman J. M. (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432.

    PubMed  CAS  Google Scholar 

  65. Tatemoto K. (1982) Isolation and characterization of peptide YY (PYY), a candidate gut hormone that inhibits pancreatic exocrine secretion. Proc. Natl. Acad. Sci. USA 79, 2514–2518.

    PubMed  CAS  Google Scholar 

  66. Sakurai T., Amemiya A., Ishii M., Matsuzaki I., Chemelli R. M., Tanaka H., et al. (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior [see comments]. Cell 92, 573–585.

    PubMed  CAS  Google Scholar 

  67. de Lecea L., Kilduff T. S., Peyron C., Gao X., Foye P. E., Danielson P. E., et al. (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc. Natl. Acad. Sci. USA 95, 322–327.

    PubMed  Google Scholar 

  68. Fan W., Boston B. A., Kesterson R. A., Hruby V. J., and Cone R. D. (1997) Role of melanocortinergic neurons in feeding and the agouti obesity syndrome [see comments]. Nature 385, 165–168.

    PubMed  CAS  Google Scholar 

  69. Huszar D., Lynch C. A., Fairchild-Huntress V., Dunmore J. H., Fang Q., Berkemeier L. R., et al. (1997) Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88, 131–141.

    PubMed  CAS  Google Scholar 

  70. Douglass J., McKinzie A. A., and Couceyro P. (1995) PCR differential display identifies a rat brain mRNA that is transcriptionally regulated by cocaine and amphetamine. J. Neurosci. 15, 2471–2481.

    PubMed  CAS  Google Scholar 

  71. Kristensen P., Judge M. E., Thim L., Ribel U., Christjansen K. N., Wulff B. S., et al. (1998) Hypothalamic CART is a new anorectic peptide regulated by leptin. Nature 393, 72–76.

    PubMed  CAS  Google Scholar 

  72. Barrachina M. D., Martinez V., Wang L., Wei J. Y., and Tache Y. (1997) Synergistic interaction between leptin and cholecystokinin to reduce short-term food intake in lean mice. Proc. Natl. Acad. Sci. USA 94, 10,455–10,460.

    CAS  Google Scholar 

  73. Morley J. E. (1987) Neuropeptide regulation of appetite and weight. Endocr. Rev. 8, 256–287.

    PubMed  CAS  Google Scholar 

  74. Scarpace P. J., Matheny M., Pollock B. H., and Tumer N. (1997) Leptin increases uncoupling protein expression and energy expenditure. Am. J. Physiol. 273, E226-E230.

    PubMed  CAS  Google Scholar 

  75. Scarpace P. J., Nicolson M., and Matheny M. (1998) UCP2, UCP3 and leptin gene expression: modulation by food restriction and leptin. J. Endocrinol. 159, 349–357.

    PubMed  CAS  Google Scholar 

  76. Elmquist J. K., Maratos-Flier E., Saper C. B., and Flier J. S. (1998) Unraveling the central nervous system pathways underlying responses to leptin. Nat. Neurosci. 1, 445–450.

    PubMed  CAS  Google Scholar 

  77. Flier J. and Maratos-Flier E. (2000) Energy homeostasis and body weight. Curr. Biol. 10, R215-R217.

    PubMed  CAS  Google Scholar 

  78. Tartaglia L. A., Dembski M., Weng X., Deng N., Culpepper J., Devos R., et al. (1995) Identification and expression cloning of a leptin receptor, OB-R. Cell 83, 1263–1271.

    PubMed  CAS  Google Scholar 

  79. Burguera B., Couce M. E., Long J., Lamsam J., Laakso K., Jensen M. D., et al. (2000) The long form of the leptin receptor (OB-Rb) is widely expressed in the human brain. Neuroendocrinology 71, 187–195.

    PubMed  CAS  Google Scholar 

  80. Ahima R. S., Prabakaran D., Mantzoros C., Qu D., Lowell B., Martos-Flier E., and Flier J. S. (1996) Role of leptin in the neuroendocrine response to fasting. Nature 382, 250–252.

    Google Scholar 

  81. Schwartz M. W., Seeley R. J., Campfield L. A., Burn P., and Baskin D. G. (1996) Identification of targets of leptin action in rat hypothalamus. J. Clin. Invest. 98, 1101–1106.

    Google Scholar 

  82. Stephens T. W., Basinski M., Bristow P. K., Bue-Valleskey J. M., Burgett S. G., Craft L., et al. (1995) The role of neuropeptide Y in the antiobesity action of the obese gene product. Nature 377, 530–532.

    PubMed  CAS  Google Scholar 

  83. Fei H., Okano H. J., Li C., Lee G. H., Zhao C., Darnell R., and Friedman J. M. (1997) Anatomic localization of alternatively spliced leptin receptors (Ob-R) in mouse brain and other tissues. Proc. Natl. Acad. Sci. USA 94, 7001–7005.

    PubMed  CAS  Google Scholar 

  84. Halaas J. L., Gajiwala K. S., Maffei M., Cohen S. L., Chait B. T., Rabinowitz D., et al. (1995) Weight-reducing effects of the plasma protein encoded by the obese gene [see comments]. Science 269, 543–546.

    PubMed  CAS  Google Scholar 

  85. Levin N., Nelson C., Gurney A., Vandlen R., and de Sauvage F. (1996) Decreased food intake does not completely account for adiposity reduction after ob protein infusion. Proc. Natl. Acad. Sci. USA 93, 1726–1730.

    Google Scholar 

  86. Pelleymounter M. A., Cullen M. J., Baker M. B., Hecht R., Winters D., Boone T., and Collins F. (1995) Effects of the obese gene product on body weight regulation in ob/ob mice [see comments]. Science 269, 540–543.

    PubMed  CAS  Google Scholar 

  87. Collins S., Kuhn C. M., Petro A. E., Swick A. G., Chrunyk B. A., and Surwit R. S. (1996) Role of leptin in fat regulation [letter]. Nature 380, 677.

    Google Scholar 

  88. Hodge A. M., Westerman R. A., de Courten M. P., Collier G. R., Zimmet P. Z., and Alberti K. G. (1997) Is leptin sensitivity the link between smoking cessation and weight gain? Int. J. Obes. Relat. Metab. Disord. 21, 50–53.

    PubMed  CAS  Google Scholar 

  89. Wei M., Stern M. P., and Haffner S. M. (1997) Serum leptin levels in Mexican Americans and non-Hispanic whites: association with body mass index and cigarette smoking [see coments]. Ann. Epidemiol. 7, 81–86.

    PubMed  CAS  Google Scholar 

  90. Mantzoros C. S., Varvarigou A., Kaklamani V. G., Beratis N. G., and Flier J. S. (1997) Effect of birth weight and maternal smoking on cord blood leptin concentrations of full-term and preterm newborns. J. Clin. Endocrinol. Metab. 82, 2856–2861.

    PubMed  CAS  Google Scholar 

  91. Eliasson B. and Smith U. (1999) Leptin levels in smokers and long-term users of nicotine gum. Eur. J. Clin. Invest. 29, 145–152.

    PubMed  CAS  Google Scholar 

  92. Oeser A., Goffaux J., Snead W., and Carlson M. G. (1999) Plasma leptin concentrations and lipid profiles during nicotine abstinence. Am. J. Med. Sci. 318, 152–157.

    PubMed  CAS  Google Scholar 

  93. Li M. D., Kane J. K., Matta S. G., Huang W., Fu Y., McAllen K., and Sharp B. M. (2000) Effects of nicotine on the expression of plasma leptin and its receptor mRNA in rat. 30th Annual Meeting of the Society for Neuroscience. Abstract.

  94. Grassi G., Seravalle G., Calhoun D. A., Bolla G. B., Giannattasio C., Marabini M., et al. (1994) Mechanisms responsible for sympathetic activation by cigarette smoking in humans. Circulation 90, 248–253.

    PubMed  CAS  Google Scholar 

  95. Neese R. A., Benowitz N. L., Hoh R., Faix D., LaBua A., Pun K., and Hellerstein M. K. (1994) Metabolic interactions between surplus dietary energy intake and cigarette smoking or its cessation. Am. J. Physiol. 267, E1023–1034.

    PubMed  CAS  Google Scholar 

  96. Skulachev V. P. (1991) Fatty acid circuit as a physiological mechanism of uncoupling of oxidative phosphorylation. FEBS Lett. 294, 158–162.

    PubMed  CAS  Google Scholar 

  97. Garlid K. D., Orosz D. E., Modriansky M., Vassanelli S., and Jezek P. (1996) On the mechanism of fatty acid-induced proton transport by mitochondrial uncoupling protein. J. Biol. Chem. 271, 2615–2620.

    Google Scholar 

  98. Jezek P., Hanus J., Semrad C., and Garlid K. D. (1996) Photoactivated azido fatty acid irreversibly inhibits anion and proton transport through the mitochondrial uncoupling protein. J. Biol. Chem. 271, 6199–6205.

    Google Scholar 

  99. Bouillaud F., Ricquier D., Thibault J., and Weissenbach J. (1985) Molecular approach to thermogenesis in brown adipose tissue: cDNA cloning of the mitochondrial uncoupling protein. Proc. Natl. Acad. Sci. USA 82, 445–448.

    PubMed  CAS  Google Scholar 

  100. Jacobsson A., Stadler U., Glotzer M. A., and Kozak L. P. (1985) Mitochondrial uncoupling protein from mouse brown fat. Molecular cloning, genetic mapping, and mRNA expression. J. Biol. Chem. 260, 16,250–16,254.

    CAS  Google Scholar 

  101. Silva J. E. and Rabelo R. (1997) Regulation of the uncoupling protein gene expression. Eur. J. Endocrinol. 136, 251–264.

    PubMed  CAS  Google Scholar 

  102. Boss O., Samec S., Paoloni-Giacobino A., Rossier C., Dulloo A., Seydoux J., et al. (1997) Uncoupling protein-3: a new member of the mitochondrial carrier family with tissue-specific expression. FEBS Lett. 408, 39–42.

    PubMed  CAS  Google Scholar 

  103. Fleury C., Neverova M., Collins S., Raimbault S., Champigny O., Levi-Meyrueis C., et al. (1997) Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia [see comments]. Nat. Genet. 15, 269–272.

    PubMed  CAS  Google Scholar 

  104. Vidal-Puig A., Solanes G., Grujic D., Flier J. S., and Lowell B. B. (1997) UCP3: an uncoupling protein homologue expressed preferentially and abundantly in skeletal muscle and brown adipose tissue. Biochem. Biophys. Res. Comm. 235, 79–82.

    PubMed  CAS  Google Scholar 

  105. Lee G. H., Proenca R., Montez J. M., Carroll K. M., Darvishzadeh J. G., Lee J. I., and Friedman J. M. (1996) Abnormal splicing of the leptin receptor in diabetic mice. Nature 379, 632–635.

    Google Scholar 

  106. Lupien J. R. and Bray G. A. (1988) Nicotine increases thermogenesis in brown adipose tissue in rats. Pharmacol. Biochem. Behav. 29, 33–37.

    PubMed  CAS  Google Scholar 

  107. Yoshida T., Sakane N., Umekawa T., Kogure A., Kondo M., Kumamoto K., et al. (1999) Nicotine induces uncoupling protein 1 in white adipose tissue of obese mice. Int. J. Obes. Relat. Metab. Disord. 23, 570–575.

    PubMed  CAS  Google Scholar 

  108. Allen Y. S., Adrian T. E., Allen J. M., Tatemoto K., Crow T. J., Bloom S. R., and Polak J. M. (1983) Neuropeptide Y distribution in the rat brain. Science 221, 877–879.

    PubMed  CAS  Google Scholar 

  109. Wahlestedt C. and Reis D. J. (1993) Neuropeptide Y-related peptides and their receptor — are the receptors potential therapeutic drug targets? Annu. Rev. Pharmacol. Toxicol. 32, 309–352.

    Google Scholar 

  110. Gehlert D. R. (1998) Multiple receptors for the pancreatic polypeptide (PP-fold) family: physiological implications. Proc. Soc. Exp. Biol. Med. 218, 7–22.

    PubMed  CAS  Google Scholar 

  111. Higuchi H., Yang H. Y., and Costa E. (1988) Age-related bidirectional changes in neuropeptide Y peptides in rat adrenal glands, brain, and blood. J. Neurochem. 50, 1879–1886.

    PubMed  CAS  Google Scholar 

  112. Kastin A. J. and Akerstrom V. (1999) Nonsaturable entry of neuropeptide Y into brain. Am. J. Physiol. 276, E479-E482.

    PubMed  CAS  Google Scholar 

  113. Burnstock G. (1987) Mechanisms of interaction of peptide and nonpeptide vascular neurotransmitter systems. J. Cardiovasc. Pharmacol. 10, S74-S81.

    PubMed  CAS  Google Scholar 

  114. Josselyn S. A. and Beninger R. J. (1993) Neuropeptide Y: intraaccumbens injections produce a place preference that is blocked by cis-flupenthixol. Pharmacol. Biochem. Behav. 46, 543–552.

    PubMed  CAS  Google Scholar 

  115. Boehm S. and Huck S. (1997) Receptors controlling transmitter release from sympathetic neurons in vitro. Prog. Neurobiol. 51, 225–242.

    PubMed  CAS  Google Scholar 

  116. Harfstrand A., Fredholm B., and Fuxe K. (1987) Inhibitory effects of neuropeptide Y on cyclic AMP accumulation in slices of the nucleus tractus solitarius region of the rat. Neurosci. Lett. 76, 185–190.

    PubMed  CAS  Google Scholar 

  117. Westlind-Danielsson A., Unden A., Abens J., Andell S., and Bartfai T. (1987) Neuropeptide Y receptors and the inhibition of adenylate cyclase in the human frontal and temporal cortex. Neurosci. Lett. 74, 237–242.

    PubMed  CAS  Google Scholar 

  118. Parker S. L., Parker M. S., and Crowley W. R. (1998) Characterization of Y1, Y2 and Y5 subtypes of neuropeptide Y (NPY) receptor in rabbit kidney. Regul. Pept. 75/76, 127–143.

    Google Scholar 

  119. Parker S. L., Parker M. S., and Crowley W. R. (1999) Characterization of rabbit kidney and brain pancreatic polypeptide- binding neuropeptide Y receptors: differences with Y1 and Y2 sites in sensitivity to amiloride derivatives affecting sodium transport. Regul. Pept. 82, 91–102.

    PubMed  CAS  Google Scholar 

  120. Brady L. S., Smith M. A., Gold P. W., and Herkenham M. (1990) Altered expression of hypothalamic neuropeptide mRNAs in food-restricted and food-deprived rats. Neuroendocrinology 52, 441–447.

    PubMed  CAS  Google Scholar 

  121. Hiremagalur B. and Sabban E. L. (1995) Nicotine elicits changes in expression of adrenal catecholamine biosynthetic enzymes, neuropeptide Y and immediate early genes by injection but not continuous administration. Brain Res. Mol. Brain Res. 32, 109–115.

    PubMed  CAS  Google Scholar 

  122. Kalra S. P., Dube M. G., Fournier A., and Kalra P. S. (1991) Structure-function analysis of stimulation of food intake by neuropeptide Y: effects of receptor agonists. Physiol. Behav. 50, 5–9.

    PubMed  CAS  Google Scholar 

  123. Stanley B. G., Magdalin W., Seirafi A., Nguyen M. M., and Leibowitz S. F. (1992) Evidence for neuropeptide Y mediation of eating produced by food deprivation and for a variant of the Y1 receptor mediating this peptide’s effect. Peptides 13, 581–587.

    PubMed  CAS  Google Scholar 

  124. Gerald C., Walker M. W., Criscione L., Gustafson E. L., Batzl-Hartmann C., Smith K. E., et al. (1996) A receptor subtype involved in neuropeptide-Y-induced food intake [see comments]. Nature 382, 168–171.

    Google Scholar 

  125. Criscione L., Rigollier P., Batzl-Hartmann C., Rueger H., Stricker-Krongrad A., Wyss P., et al. (1998) Food intake in free-feeding and energydeprived lean rats is mediated by the neuropeptide Y5 receptor. J. Clin. Invest. 102, 2136–2145.

    Article  PubMed  CAS  Google Scholar 

  126. Yokosuka M., Kalra P. S., and Kalra S. P. (1999) Inhibition of neuropeptide Y (NPY)-induced feeding and c-Fos response in magnocellular paraventricular nucleus by a NPY receptor antagonist: a site of NPY action. Endocrinology 140, 4494–4500.

    PubMed  CAS  Google Scholar 

  127. Kanatani A., Mashiko S., Murai N., Sugimoto N., Ito J., Fukuroda T., et al. (2000) Role of the Y1 receptor in the regulation of neuropeptide Y-mediated feeding: comparison of wild-type, Y1 receptor-deficient, and Y5 receptor-deficient mice. Endocrinology 141, 1011–1016.

    PubMed  CAS  Google Scholar 

  128. Wyss P., Stricker-Krongrad A., Brunner L., Miller J., Crossthwaite A., Whitebread S., and Criscione L. (1998) The pharmacology of neuropeptide Y (NPY) receptor-mediated feeding in rats characterizes better Y5 than Y1, but not Y2 or Y4 subtypes. Regul. Pept. 75–76, 363–371.

    PubMed  Google Scholar 

  129. Statnick M. A., Schober D. A., Gackenheimer S., Johnson D., Beavers L., Mayne N. G., et al. (1998) Characterization of the neuropeptide Y5 receptor in the human hypothalamus: a lack of correlation between Y5 mRNA levels and binding sites. Brain Res. 810, 16–26.

    PubMed  CAS  Google Scholar 

  130. Adie E. J. and Milligan G. (1994) Agonist regulation of cellular Gs alpha-subunit levels in neuroblastoma × glioma hybrid NG108-15 cells transfected to express different levels of the human beta 2 adrenoceptor. Biochem. J. 300, 709–715.

    PubMed  CAS  Google Scholar 

  131. Jewell-Motz E. A., Donnelly E. T., Eason M. G., and Liggett S. B. (1998) Agonist-mediated downregulation of G alpha i via the alpha 2-adrenergic receptor is targeted by receptor-Gi interaction and is independent of receptor signaling and regulation. Biochemistry 37, 15,720–15,725.

    CAS  Google Scholar 

  132. Mixon M. B., Lee E., Coleman D. E., Berghuis A. M., Gilman A. G., and Sprang S. R. (1995) Tertiary and quaternary structural changes in Gi alpha 1 induced by GTP hydrolysis. Science 270, 954–960.

    PubMed  CAS  Google Scholar 

  133. Calderwood S. K., Stevenson M. A., and Price B. D. (1993) Activation of phospholipase C by heat shock requires GTP analogs and is resistant to pertussis toxin. J. Cell Physiol. 156, 153–159.

    PubMed  CAS  Google Scholar 

  134. Chen C. T., Dun S. L., Kwok E. H., Dun N. J., and Chang J. K. (1999) Orexin A-like immunoreactivity in the rat brain. Neurosci. Lett. 260, 161–164.

    PubMed  CAS  Google Scholar 

  135. Cutler D. J., Morris R., Sheridhar V., Wattam T. A., Holmes S., Patel S., et al. (1999) Differential distribution of orexin-A and orexin-B immunoreactivity in the rat brain and spinal cord. Peptides 20, 1455–1470.

    PubMed  CAS  Google Scholar 

  136. Date Y., Mondal M. S., Matsukura S., and Nakazato M. (2000) Distribution of orexin-A and orexin-B (hypocretins) in the rat spinal cord. Neurosci. Lett. 288, 87–90.

    PubMed  CAS  Google Scholar 

  137. Date Y., Mondal M. S., Matsukura S., Ueta Y., Yamashita H., Kaiya H., et al. (2000) Distribution of orexin/hypocretin in the rat median eminence and pituitary. Brain Res. Mol. Brain Res. 76, 1–6.

    PubMed  CAS  Google Scholar 

  138. Mondal M. S., Nakazato M., Date Y., Murakami N., Yanagisawa M., and Matsukura S. (1999) Widespread distribution of orexin in rat brain and its regulation upon fasting. Biochem. Biophys. Res. Comm. 256, 495–499.

    PubMed  CAS  Google Scholar 

  139. Nambu T., Sakurai T., Mizukami K., Hosoya Y., Yanagisawa M., and Goto K. (1999) Distribution of orexin neurons in the adult rat brain. Brain Res. 827, 243–260.

    PubMed  CAS  Google Scholar 

  140. Peyron C., Tighe D. K., van den Pol A. N., de Lecea L., Heller H. C., Sutcliffe J. G., and Kilduff T. S. (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J. Neurosci. 18, 9996–10,015.

    PubMed  CAS  Google Scholar 

  141. Taheri S., Mahmoodi M., Opacka-Juffry J., Ghatei M. A., and Bloom S. R. (1999) Distribution and quantification of immunoreactive orexin A in rat tissues. FEBS Lett. 457, 157–161.

    PubMed  CAS  Google Scholar 

  142. Taheri S., Sunter D., Dakin C., Moyes S., Seal L., Gardiner J., et al. (2000) Diurnal variation in orexin A immunoreactivity and preproorexin mRNA in the rat central nervous system. Neurosci. Lett. 279, 109–112.

    PubMed  CAS  Google Scholar 

  143. Dube M. G., Kalra S. P., and Kalra P. S. (1999) Food intake elicited by central administration of orexins/hypocretins: identification of hypothalamic sites of action. Brain Res. 842, 473–477.

    PubMed  CAS  Google Scholar 

  144. Lubkin M. and Stricker-Krongrad A. (1998) Independent feeding and metabolic actions of orexins in mice. Biochem. Biophys. Res. Comm. 253, 241–245.

    PubMed  CAS  Google Scholar 

  145. Chemelli R. M., Willie J. T., Sinton C. M., Elmquist J. K., Scammell T., Lee C., et al. (1999) Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation [see comments]. Cell 98, 437–451.

    PubMed  CAS  Google Scholar 

  146. Lin L., Faraco J., Li R., Kadotani H., Rogers W., Lin X., et al. (1999) The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene [see comments]. Cell 98, 365–376.

    PubMed  CAS  Google Scholar 

  147. Kilduff T. S. and Peyron C. (2000) The hypocretin/orexin ligand-receptor system: implications for sleep and sleep disorders. Trends Neurosci. 23, 359–365.

    PubMed  CAS  Google Scholar 

  148. Taheri S., Ward H., Ghatei M., and Bloom S. (2000) Role of orexins in sleep and arousal mechanisms [letter]. Lancet 355, 847.

    PubMed  CAS  Google Scholar 

  149. van den Pol A. N. (1999) Hypothalamic hypocretin (orexin): robust innervation of the spinal cord. J. Neurosci. 19, 3171–3182.

    PubMed  Google Scholar 

  150. Chen C. T., Hwang L. L., Chang J. K., and Dun N. J. (2000) Pressor effects of orexins injected intracisternally and to rostral ventrolateral medulla of anesthetized rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 278, R692-R697.

    PubMed  CAS  Google Scholar 

  151. Shirasaka T., Nakazato M., Matsukura S., Takasaki M., and Kannan H. (1999) Sympathetic and cardiovascular actions of orexins in conscious rats. Am. J. Physiol. 277, R1780-R1785.

    PubMed  CAS  Google Scholar 

  152. Ida T., Nakhara K., Murakami T., Hanada R., Nakazato M., and Murakami N. (2000) Possible involvement of orexin in the stress reaction in rats. Biochem. Biophys. Res. Comm. 270, 318–323.

    PubMed  CAS  Google Scholar 

  153. Kuru M., Ueta Y., Serino R., Nakazato M., Yamamoto Y., Shibuya I., and Yamashita H. (2000) Centrally administered orexin/hypocretin activates HPA axis in rats. Neuroreport 11, 1977–1980.

    PubMed  CAS  Google Scholar 

  154. Sakurai T. (1999) Orexins and orexin receptors: implication in feeding behavior. Regul. Pept. 85, 25–30.

    PubMed  CAS  Google Scholar 

  155. Kane J. K., Parker S. L., Matta S. G., Fu Y., Sharp B. M., and Li M. D. (2000) Nicotine upregulates expression of orexin and its receptors in rat brain. Endocrinology 141, 3623–3629.

    PubMed  CAS  Google Scholar 

  156. Yu Z. J. and Wecker L. (1994) Chronic nicotine administration differentially affects neurotransmitter release from rat striatal slices. J. Neurochem. 63, 186–194.

    Article  PubMed  CAS  Google Scholar 

  157. Takahashi H., Takada Y., Nagai N., Urano T., and Takada A. (1998) Nicotine increases stressinduced serotonin release by stimulating nicotinic acetylcholine receptor in rat striatum. Synapse 28, 212–219.

    PubMed  CAS  Google Scholar 

  158. Kane J. K., Tanaka H., Parker S. L., Yanagisawa M., and Li M. D. (2000) Sensitivity of orexin-A binding to phospholipase C inhibitors, neuropeptide Y, and secretin. Biochem. Biophys. Res. Comm. 272, 959–965.

    PubMed  CAS  Google Scholar 

  159. Clayton R. N., Solano A. R., Garcia-Vela A., Dufau M. L., and Catt K. J. (1980) Regulation of pituitary receptors for gonadotropin-releasing hormone during the rat estrous cycle. Endocrinology 107, 699–706.

    Article  PubMed  CAS  Google Scholar 

  160. Faussner A., Proud D., Towns M., and Bathon J. M. (1998) Influence of the cytosolic carboxyl termini of human B1 and B2 kinin receptors on receptor sequestration, ligand internalization, and signal transduction. J. Biol. Chem. 273, 2617–2623.

    PubMed  CAS  Google Scholar 

  161. Hunyady L., Bor M., Balla T., and Catt K. J. (1994) Identification of a cytoplasmic Ser-Thr-Leu motif that determines agonist-induced internalization of the AT1 angiotensin receptor. J. Biol. Chem. 269, 31378–31382.

    PubMed  CAS  Google Scholar 

  162. Kastin A. J. and Akerstrom V. (1999) Orexin A but not orexin B rapidly enters brain from blood by simple diffusion. J. Pharmacol. Exp. Ther. 289, 219–223.

    PubMed  CAS  Google Scholar 

  163. Hoebel B. G., Hernandez L., Schwartz D. H., Mark G. P., and Hunter G. A. (1989) Microdialysis studies of brain norepinephrine, serotonin, and dopamine release during ingestive behavior. Theoretical and clinical implications. Ann. NY Acad. Sci. 575, 171–191.

    PubMed  CAS  Google Scholar 

  164. Leibowitz S. F. (1986) Brain monoamines and peptides: role in the control of eating behavior. Fed. Proc. 45, 1396–1403.

    PubMed  CAS  Google Scholar 

  165. Leibowitz S. F. and Shor-Posner G. (1986) Brain serotonin and eating behavior. Appetite 7, 1–14.

    PubMed  CAS  Google Scholar 

  166. Leibowitz S. F. and Rossakis C. (1978) Analysis of feeding suppression produced by perifornical hypothalamic injection of catecholamines, amphetamines and mazindol. Eur. J. Pharmacol. 53, 69–81.

    PubMed  CAS  Google Scholar 

  167. Waldbillig R. J., Bartness T. J., and Stanley B. G. (1981) Increased food intake, body weight, and adiposity in rats after regional neurochemical depletion of serotonin. J. Comp. Physiol. Phychol. 95, 391–405.

    CAS  Google Scholar 

  168. Leibowitz S. F. (1975) Catecholaminergic mechanisms of the lateral hypothalamus: their role in the mediation of amphetamine anorexia. Brain Res. 98, 529–545.

    PubMed  CAS  Google Scholar 

  169. Leibowitz S. F., Shor-Posner G., Maclow C., and Grinker J. A. (1986) Amphetamine: effects on meal patterns and macronutrient selection. Brain Res. Bull. 17, 681–689.

    PubMed  CAS  Google Scholar 

  170. Hernandez L. and Hoebel B. G. (1988) Food reward and cocaine increase extracellular dopamine in the nucleus accumbens as measured by microdialysis. Life Sci. 42, 1705–1712.

    PubMed  CAS  Google Scholar 

  171. Hernandez L. and Hoebel B. G. (1988) Feeding and hypothalamic stimulation increase dopamine turnover in the accumbens. Physiol. Behav. 44, 599–606.

    PubMed  CAS  Google Scholar 

  172. Schwartz D. H., McClane S., Hernandez L., and Hoebel B. G. (1989) Feeding increases extracellular serotonin in the lateral hypothalamus of the rat as measured by microdialysis. Brain Res. 479, 349–354.

    PubMed  CAS  Google Scholar 

  173. Schwartz D. H., Hernandez L., and Hoebel B. G. (1990) Serotonin release in lateral and medial hypothalamus during feeding and its anticipation. Brain Res. Bull. 25, 797–802.

    PubMed  CAS  Google Scholar 

  174. Aberman J. E. and Salamone J. D. (1999) Nucleus accumbens dopamine depletions make rats more sensitive to high ratio requirements but do not impair primary food reinforcement. Neuroscience 92, 545–552.

    PubMed  CAS  Google Scholar 

  175. Radhakishun F. S., van Ree J. M., and Westerink B. H. (1988) Scheduled eating increases dopamine release in the nucleus accumbens of food-deprived rats as assessed with on-line brain dialysis. Neurosci. Lett. 85, 351–356.

    PubMed  CAS  Google Scholar 

  176. Salamone J. D., Mahan K., and Rogers S. (1993) Ventrolateral striatal dopamine depletions impair feeding and food handling in rats. Pharmacol. Biochem. Behav. 44, 605–610.

    PubMed  CAS  Google Scholar 

  177. Salamone J. D., Cousins M. S., McCullough L. D., Carriero D. L., and Berkowitz R. J. (1994) Nucleus accumbens dopamine release increases during instrumental level pressing for food but not free food consumption. Pharmacol. Biochem. Behav. 49, 25–31.

    PubMed  CAS  Google Scholar 

  178. Miyata G., Meguid M. M., Fetissov S. O., Torelli G. F., and Kim H. J. (1999) Nicotine’s effect on hypothalamic neurotransmitters and appetite regulation. Surgery 126, 255–263.

    PubMed  CAS  Google Scholar 

  179. Yang Z. J., Blaha V., Meguid M. M., Oler A., and Miyata G. (1999) Infusion of nicotine into the LHA enhances dopamine and 5-HT release and suppresses food intake. Pharmacol. Biochem. Behav. 64, 155–159.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming D. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M.D., Parker, S.L. & Kane, J.K. Regulation of feeding-associated peptides and receptors by nicotine. Mol Neurobiol 22, 143–165 (2000). https://doi.org/10.1385/MN:22:1-3:143

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:22:1-3:143

Index Entries

Navigation