Skip to main content
Log in

Small proteins that modulate calmodulin-dependent signal transduction

Effects of PEP-19, neuromodulin, and neurogranin on enzyme activation and cellular homeostasis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Neuromodulin (GAP-43), neurogranin (RC3), and PEP-19 are small acid-stable proteins that bind calcium-poor calmodulin through a loosely conserved IQ-motif. Even though these proteins have been known for many years, much about their function in cells is not understood. It has recently become appreciated that calmodulin activity in cells is tightly controlled and that pools of otherwise free calmodulin are sequestered so as to restrict its availability for activating calcium/calmodulin-dependent enzymes. Neuromodulin, neurogranin, and PEP-19 appear to be major participants in this type of regulation. One way in which they do this is by providing localized increases in the concentration of calmodulin in cells so that the maximal level of target activation is increased. Additionally, they can function as calmodulin antagonists by directly inhibiting the association of calcium/calmodulin with enzymes and other proteins. Although neuromodulin, neurogranin, and PEP-19 were early representatives of the small IQ-motif-containing protein family, newer examples have come to light that expand the number of cellular systems through which the IQ-peptide/calmodulin interaction could regulate biological processes including gene transcription. It is the purpose of this review to examine the behavior of neuromodulin, neurogranin, and PEP-19 in paradigms that include both in vitro and in situ systems in order to summarize possible biological consequences that are linked to the expression of this type of protein. The use of protein:protein interaction chromatography is also examined in the recovery of a new calmodulin-binding peptide, CAP-19 (ratMBF1). Consistent with earlier predictions, at least one function of small IQ-motif proteins appears to be that they lessen the extent to which calcium-calmodulin-dependent enzymes become or stay activated. It also appears that these polypeptides can function to selectively inhibit activation of intracellular targets by some agonists while simultaneously permitting activation of these same targets by other agonists. Much of the mechanism for how this occurs is unknown, and possible explanations are examined. One of the biological consequences for a cell that expresses a calmodulin-regulatory protein could be an increased resistance to calcium-mediated toxicity. This possibility is examined for cells expressing PEP-19 and both anatomical and cell-biological data is described. The study of IQ-motif-containing small proteins has stimulated considerable thought as to how calcium signaling is refined in neurons. Current evidence suggests that signaling through calmodulin is not a fulminating and homogenous process but a spatially limited and highly regulated one. Data from studies on neuromodulin, neurogranin, and PEP-19 suggest that they play an important role in establishing some of the processes by which this regulation is accomplished.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ghosh A. and Greenberg M. E. (1995) Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science 268, 239–247.

    Article  PubMed  CAS  Google Scholar 

  2. Deisseroth K., Heis E. K., and Tsien R. W. (1998) Translocation of calmodulin to the nucleus supports CREB phosphorylation in hippocampal neurons. Nature 392, 198–202.

    Article  PubMed  CAS  Google Scholar 

  3. De Koninck P. and Schulman H. (1998) Sensitivity of CaM Kinase II to the frequency of Ca2+ oscillations. Science 279, 227–230.

    Article  PubMed  Google Scholar 

  4. Trump B. F. and Berezesky I. K. (1992) The role of Ca2+ in cell injury, necrosis and apoptosis. Curr. Opin. Biol. 4, 227–232.

    Article  CAS  Google Scholar 

  5. Vendrell M., Curran T., and Morgan J. I. (1993) Glutamate, immediate-early genes, and cell death in the nervous system. Ann. NY Acad. Sci. 679, 132–141.

    Article  PubMed  CAS  Google Scholar 

  6. Curran T. and Morgan J. (1987) Memories of fos. Bioessays 7, 255–258.

    Article  PubMed  CAS  Google Scholar 

  7. Bito H., Deisseroth K., and Tsien R. W. (1996) CREB phosphorylation and dephosphorylation: a Ca2+- and stimulus duration-dependent switch for hippocampal gene expression. Cell 87, 1203–1214.

    Article  Google Scholar 

  8. Impey S., Obrietan K., Wong S. T., Poser S., Yano S., Wayman G., et al. (1998) Cross talk between ERK and PKA is required for Ca2+ stimulation of CREB-dependent transcription and ERK nuclear translocation. Neuron 21, 869–883.

    Article  PubMed  CAS  Google Scholar 

  9. Kakiuchi S., Yasuda S., Yamazaki R., Teshima Y., Kanda K., Kakiuchi R., and Sobue K. (1982) Quantitative determinations of calmodulin in the supernatant and particulate fractions of mammalian tissues. J. Biochem. 92, 1041–1048.

    PubMed  CAS  Google Scholar 

  10. Klee C. B. and Vanaman T. C. (1982) Calmodulin. Adv. Protein Chemi. 35, 213–321.

    Article  CAS  Google Scholar 

  11. Liu Y. and Storm D. R. (1990) Regulation of free calmodulin levels by neuromodulin: neuron growth and regeneration. Trends Pharmacol. Sci. 11, 107–111.

    Article  PubMed  CAS  Google Scholar 

  12. McIlroy B. K., Walters J. D., Blackshear P. J., and Johnson J. D. (1991) Phosphorylation-dependent binding of a synthetic MARCKS peptide to calmodulin. J. Biol. Chem. 266, 4959–4964.

    PubMed  CAS  Google Scholar 

  13. Gerendasy D. D., Herron S. R., Wong K. K., Watson J. B., and Sutcliffe J. G. (1994) Mutational and biophysical studies suggest RC3/neurogranin regulates calmodulin availability. J. Biol. Chem. 269, 22,420–22,426.

    CAS  Google Scholar 

  14. Porter J. A., Yu M., Doberstein S. K., Pollard T. D., and Montell C. (1993) Dependence of calmodulin localization in the retina on the NINAC unconventional myosin. Science 262, 1038–1042.

    Article  PubMed  CAS  Google Scholar 

  15. Sacks D. B., Mazus B., and Joyal J. L. (1995) The activity of calmodulin is altered by phosphorylation: modulation of calmodulin function by the site of phosphate incorporation. Biochem. J. 312, 197–204.

    PubMed  CAS  Google Scholar 

  16. Quadroni M., L’Hostis E. L., Corti C., Myagkikh I., Durussel I., Cox J., James P., and Carafoli E. (1998) Phosphorylation of calmodulin alters its potency as an activator of target enzymes. Biochemistry 37, 6523–6532.

    Article  PubMed  CAS  Google Scholar 

  17. Persechini A. and Cronk B. (1999) The relationship between the free concentrations of Ca2+ and Ca2+-calmodulin in intact cells. J. Biol. Chem. 274, 6827–6830.

    Article  PubMed  CAS  Google Scholar 

  18. Skene J. H. S. (1989) Axonal growth-associated proteins. Ann. Rev. Neurosci. 12, 127–156.

    Article  PubMed  CAS  Google Scholar 

  19. Coggins P. J. and Zwiers H. (1991) B-50 (GAP-43): Biochemistry and functional neurochemistry of a neuron-specific phosphoprotein. J. Neurochem. 56, 1095–1106.

    Article  PubMed  CAS  Google Scholar 

  20. Gerendasy D. D. and Sutcliffe J. G. (1997) RC3/neurogranin, a postsynaptic calpacitin for setting the response threshold to calcium influxes. Mol. Neurobiol. 15, 131–163.

    Article  PubMed  CAS  Google Scholar 

  21. Ziai R., Pan Y.-C. E., Hulmes J. D., Sangameswaran L., and Morgan J. I. (1986) Isolation, sequence, and developmental profile of a brain-specific polypeptide, PEP-19. Proc. Natl. Acad. Sci. USA 83, 8420–8423.

    Article  PubMed  CAS  Google Scholar 

  22. Berrebi A. S., Oberdick J., Sangameswaran L., Christakos S., Morgan J. I., and Mugnaini E. (1991) Cerebellar Purkinje cell markers are expressed in retinal bipolar neurons. J. Comp. Neurol. 308, 630–649.

    Article  PubMed  CAS  Google Scholar 

  23. Utal A. K., Stopka A. L., Roy M., and Coleman P. D. (1998) PEP-19 immunohistochemistry defines the basal ganglia and associated structures in the adult human brain, and is dramatically reduced in Huntington’s disease. Neuroscience 86, 1055–1063.

    Article  PubMed  CAS  Google Scholar 

  24. Berrebi A. S. and Mugnaini E. (1991) Distribution and targets of the cartwheel cell axon in the dorsal cochlear nucleus of the guinea pig. Anat. Embryol. 183, 427–454.

    Article  PubMed  CAS  Google Scholar 

  25. Berrebi A. S. and Spirou G. A. (1998) PEP-19 immunoreactivity in the cochlear nucleus and superior olive of the cat. Neuroscience 83, 535–554.

    Article  PubMed  CAS  Google Scholar 

  26. Sangameswaran L., Hempstead J., and Morgan J. I. (1989) Molecular cloning of a neuron-specific transcript and its regulation during normal and aberrant cerebellar development. Proc. Natl. Acad. Sci. USA 86, 5651–5655.

    Article  PubMed  CAS  Google Scholar 

  27. Chikawa H., Morgan J. I., and Sugimoto T. (1999) Peptide 19 in the dorsal root ganglion and the mesencephalic trigeminal tract nucleus of the adult rat. Brain Res. 821, 231–235.

    Article  Google Scholar 

  28. Ichikawa H. and Sugimoto T. (1999) Peptide 19-immunoreactive primary sensory neurons in the rat trigeminal ganglion. Brain Res. 846, 274–279.

    Article  PubMed  CAS  Google Scholar 

  29. Sangameswaran L. and Morgan J. I. (1993) Structure and regulation of the gene encoding the neuron-specific protein PEP-19. Mol. Brain Res. 19, 62–68.

    Article  PubMed  CAS  Google Scholar 

  30. West M. J., Coleman P. D., Flood D. G., and Troncoso J. C. (1994) Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease. Lancet 344, 769–772.

    Article  PubMed  CAS  Google Scholar 

  31. Slemmon J. R., Hughes C. M., Campbell G. A., and Flood D. G. (1994) Increased levels of hemoglobin-derived ad other peptides in Alzheimer’s disease cerebellum. J. Neurosci. 14, 2225–2235.

    PubMed  CAS  Google Scholar 

  32. Martin S. J., Green D. R., and Cotter T. G. (1994) Dicing with death: dissecting the components of the apoptosis machinery. Trends Biol. Sci. 19, 26–30.

    Article  CAS  Google Scholar 

  33. Dawson T. M., Hung K., Dawson V. L., Steiner J. P., and Snyder S. H. (1995) Neuroprotective effects of gangliosides may involve inhibition o nitric oxide synthase. Ann. Neurol. 37, 115–118.

    Article  PubMed  CAS  Google Scholar 

  34. Bao J., Sharp A. H., Wagster M. V., Becher M., Schilling G., Ross C. A., et al. (1996) Expansion of polyglutamine repeat in huntingtin leads to abnormal protein interactions involving calmodulin. Proc. Natl. Acad. Sci. USA 93, 5037–5042.

    Article  Google Scholar 

  35. Smith M. L., Johanson R. A., Rogers K. E., Coleman P. D., and Slemmon J. R. (1998) Identification of a neuronal calmodulin-binding peptide, CAP-19, containing an IQ motif. Mol. Brain Res. 62, 12–24.

    Article  PubMed  CAS  Google Scholar 

  36. Slemmon J. R. and Martzen M. R. (1994) Neuromodulin (GAP-43) can regulate a calmodulindependent target in vitro. Biochemistry 33, 5653–5660.

    Article  PubMed  CAS  Google Scholar 

  37. Martzen M. R. and Slemmon J. R. (1995) The dendritic peptide neurogranin can regulate a calmodulin-dependent target. J. Neurochem. 64, 92–100.

    Article  PubMed  CAS  Google Scholar 

  38. Mooseker M. S. (1992) Primary structure and cellular localization of chicken brain myosin-V (p190), an unconventional myosin with calmodulin light chains. J. Cell Biol. 119, 1541–1557.

    Article  PubMed  Google Scholar 

  39. Slemmon J. R., Morgan J. I., Fullerton S. M., Danho W., Hilbush B. S., and Wengenack T. M. (1996) Camstatins are peptide antagonists of calmodulin based upon a conserved structural motif in PEP-19, neurogranin, and neuromodulin. J. Biol. Chem. 271, 15,911–15,971.

    Google Scholar 

  40. Apel E. D., Byford M. F., Au D., Walsh K. A., and Storm D. R. (1990) Identification of the protein kinase C phosphorylation site in neuromodulin. Biochemistry 29, 2330–2335.

    Article  PubMed  CAS  Google Scholar 

  41. Baudier J., Deloulme J. C., Dorsselaer A. V., Black D., and Matthes H. W. D. (1991) Purification and characterization of a brain-specific protein kinase C substrate, neurogranin (p17). J. Biol. Chem. 266, 229–237.

    PubMed  CAS  Google Scholar 

  42. Alexander K. A., Cimler B. M., Meier K. E., and Storm D. R. (1987) Regulation of calmodulin binding to P57. J. Biol. Chem. 262, 6108–6113.

    PubMed  CAS  Google Scholar 

  43. Liu Y. and Storm D. R. (1989) Dephosphorylation of neuromodulin by calcineurin. J. Biol. Chem. 264, 12,800–12,804.

    CAS  Google Scholar 

  44. Skene J. H. P. and Virág I. (1989) Posttranslational membrane attachment and dynamic fatty acylation of a neuronal growth cone protein, GAP-43. J. Cell Biol. 108, 613–624.

    Article  PubMed  CAS  Google Scholar 

  45. Zuber M. X., Goodman D. W., Karns L. R., and Fishman M. C. (1989) The neuronal-associated protein GAP-43 induces filopodia in non-neuronal cells. Science 244, 1193–1195.

    Article  PubMed  CAS  Google Scholar 

  46. Liu Y., Chapman E. R., and Storm D. R. (1991) Targeting of neuromodulin (GAP-43) fusion proteins to growth cones in cultured rat embryonic neurons. Neuron 6, 411–420.

    Article  PubMed  CAS  Google Scholar 

  47. Sudo Y., Valenzuela D., Beck-Sickinger A. G., Fishman M. C., and Strittmatter S. M. (1992) Palmitoylation alters protein activity: blockade of Go stimulation by GAP-43. EMBO J. 11, 2095–2102.

    PubMed  CAS  Google Scholar 

  48. Strittmatter S. M., Cannon S. C., Ross E. M., Higashijima T., and Fishman M. C. (1993) GAP-43 augments G protein-coupled receptor transduction in Xenopus laevis oocytes. Proc. Natl. Acad. Sci. USA 90, 5327–5331.

    Article  PubMed  CAS  Google Scholar 

  49. Egberongbe Y. I., Gentleman S. M., Falkai P., Bogerts B., Polak J. M., and Roberts G. W. (1994) The distribution of nitric oxide synthase immunoreactivity in the human brain. Neuroscience 59, 561–578.

    Article  PubMed  CAS  Google Scholar 

  50. Saxon D. W. and Beitz A. J. (1994) Cerebellar injury induces NOS in Purkinje cells in cerebellar afferent neurons. NeuroReport 5, 809–812.

    Article  PubMed  CAS  Google Scholar 

  51. Bredt D. S. and Snyder S. H. (1990) Isolation of nitric oxide synthase, a calmodulin-requiring enzyme. Proc. Natl. Acad. Sci. USA 87, 682–685.

    Article  PubMed  CAS  Google Scholar 

  52. Johanson R. A., Sarau H. M., Foley J. J., and Slemmon J. R. (2000) Calmodulin-binding peptide PEP-19 modulates activation of calmodulin kinase II in situ. J. Neurosci. 20, 2860–2866.

    PubMed  CAS  Google Scholar 

  53. Quadroni M., James P., and Carafoli E. (1994) Isolation of phosphorylated calmodulin from rat liver and identification of the in vivo phosphorylation sites. J. Biol. Chem. 269, 16,116–16,122.

    CAS  Google Scholar 

  54. Benguría A., Soriano M., Joyal J. L., Sacks D. B., and Villalobo A. (1995) Phosphorylation of calmodulin by plasma-membrane-associated protein kinase(s). Eur. J. Biochem. 234, 50–58.

    Article  PubMed  Google Scholar 

  55. Joyal J. L., Crimmins D. L., Thoma R. S., and Sacks D. B. (1996) Identification of insulin-stimulated phosphorylation sites on calmodulin. Biochemistry 35, 6267–6275.

    Article  Google Scholar 

  56. De Fructos T., Martín-Nieto J., and Villalobo A. (1997) Phosphorylation of calmodulin by permeabilized fibroblasts overexpressing the human epidermal growth factor receptor. Biol. Chem. 378, 31–37.

    Article  Google Scholar 

  57. Erhardt J. A., Johanson R. A., Slemmon J. R., and Wang X. (2000) Expression of PEP-19 inhibits apoptosis in PC12 cells. NeuroReport 11, 3719–3723.

    Article  PubMed  CAS  Google Scholar 

  58. Kruman I., Guo Q., and Mattson M. P. (1998) Calcium and reactive oxygen species mediate staurosporine-induced mitochondrial dysfunction and apoptosis in PC12 cells. J. Neurosci. Res. 51, 293–308.

    Article  PubMed  CAS  Google Scholar 

  59. Prehn J. H. M., Jordan J., Ghadge G. D., Preis E., Galindo M. F., and Roos R. P., et al. (1997) Calcium and reactive oxygen species in staurosporine-induced neuronal apoptosis. J. Neurochem. 68, 1679–1685.

    Article  PubMed  CAS  Google Scholar 

  60. Takemaru K-I., Li F-Q., Ueda H., and Hirose S. (1997) Multiple bridging factor 1 (MBF1) is an evolutionarily conserved transciptional coactivator that connects a regulatory factor TATA element-binding protein. Proc. Natl. Acad. Sci. USA 94, 7251–7256.

    Article  PubMed  CAS  Google Scholar 

  61. Kabe Y., Goto M., Shima D., Imai T., Wada T., Morohashi K-i., Shirakawa M., Hirose S., and Handa H. (1999) The role of human MBF1 as a transcriptional coactivator. J. Biol. Chem. 274, 34,196–34,202.

    Article  CAS  Google Scholar 

  62. Mariotti M., De Benedictis L., Avon E., and Maier J. A. M. (2000) Interaction between endothelial differentiation-related factor-1 and calmodulin in vitro and in vivo. J. Biol. Chem. 275, 24,047–24,051.

    Article  CAS  Google Scholar 

  63. Dragon I., Mariotti M., Consalez G. G., Soria M. R., and Maier J. A. M. (1998) EDF-1, a novel gene product down-regulated in human endothelial cell differentiation. J. Biol. Chem. 273, 31,119–31,124.

    Google Scholar 

  64. Klee C. B. (1991) Concerted regulation of protein phosphorylation and dephosphorylation by calmodulin. Neurochem. Res. 16, 1059–1065.

    Article  PubMed  CAS  Google Scholar 

  65. Rich R. C. and Schulman H. (1998) Substrate-directed function of calmodulin in autophosphorylation of Ca2+/calmodulin-dependent protein kinase II. J. Biol. Chem. 273, 28,424–28,429.

    Article  CAS  Google Scholar 

  66. Meyer T., Hanson P. I., Stryer L., and Schulman H. (1992) Calmodulin trapping by calcium-calmodulin-dependent protein kinase. Science 256, 1199–1202.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Randall Slemmon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slemmon, J.R., Feng, B. & Erhardt, J.A. Small proteins that modulate calmodulin-dependent signal transduction. Mol Neurobiol 22, 99–113 (2000). https://doi.org/10.1385/MN:22:1-3:099

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:22:1-3:099

Index Entries

Navigation