Skip to main content
Log in

The FokI methyltransferase from Flavobacterium okeanokoites

Purification and characterization of the enzyme and its truncated derivatives

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The gene encoding the FokI methyltransferase from Flavobacterium okeanokoites was cloned into an Escherichia coli vector. The transcriptional start sites were mapped as well as putative −10 and −35 regions of the fokIM promoter. Enzyme overproduction was ensured by cloning the fokIM gene under the φ 10 promoter of phage T7. M·FokI was purified using a two-step chromatography procedure. M·FokI is a monomeric protein with a M r=76,000±1,500 under denaturing conditions. It contains 21 Arg residues, and at least one of which is required for activity as shown by inhibition using 2,3-butanedione. Deletion mutants in the N- and C-terminus of M·FokI were isolated and characterized. The N-terminal derivative (M·FokIN) methylates the adenine residue within the sequence 5′-GGATG-3′, whereas the C-terminal derivative (M·FokIC) modifies the adenine residue within the sequence 5′-CATCC-3′. Substrate-protection studies, utilizing chemical modification combined with data on the effect of divalent cations and pH on methylation activity, proved the existence of two catalytic centers within the FokI methyltransferase molecule. M·FokI and its truncated derivatives require S-adenosyl-l-methionine as the methyl-group donor, and they are strongly inhibited by divalent cations (Mg2+, Ca2+, Ba2+, Mn2+, and Zn2+) and S-adenosyl-l-homocysteine. The K m values for the methyl donor, S-adenosyl-{spl}-methionine are 0.6 µM (M·FokI), 0.4 µM (M·FokIN), and 0.9 µM (M·FokIC) while the Km values for substrate λ DNA are 1.2 nM (M·FokI), 1.4 nM (M·FokIN), and 1.3 nM (M·FokIC).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sugisaki, H. and Kanazawa, S. (1981) New restriction endonucleases from Flavobacterium okeanokoites (FokI) and Micrococcus luteus (MluI). Gene 16, 73–78.

    Article  PubMed  CAS  Google Scholar 

  2. Landry, D., Looney, M. C., Feehery, G. R., Slatko, B. E., Jack, W. E., Schildkraut, I., and Wilson, G. G. (1989) M·FokI methylates adenine in both strands of its asymmetric recognition sequence. Gene 77, 1–10.

    Article  PubMed  CAS  Google Scholar 

  3. Kita, K., Kotani, H., Sugisaki, H. and Takanami, M. (1989) The FokI restriction-modification system I. Organization and nucleotide sequences of the restriction and modification genes. J. Biol. Chem. 264, 5751–5756.

    PubMed  CAS  Google Scholar 

  4. Looney, M. C., Moran, L. S., Jack, W. E., Feehery, G. R., Benner, J. S., Slatko, B. E., and Wilson, G. G. (1989) Nucleotide sequence of the FokI restriction-modification system: separate strand specificity domains in the methyltransferase. Gene 80, 193–208.

    Article  PubMed  CAS  Google Scholar 

  5. Li, L., Wu, L. P., and Chandrasegaran, S. (1992) Functional domains in FokI restriction endonuclease. Proc. Natl. Acad. Sci. USA 89, 4275–4279.

    Article  PubMed  CAS  Google Scholar 

  6. Posfai, G. and Szybalski, W. (1988) A simple method for locating methylated bases in DNA, as applied to detect asymmetric methylation by M·FokI. Gene 69, 147–151.

    Article  PubMed  CAS  Google Scholar 

  7. Sugisaki, H., Kita, K., and Takanami, M. (1989) The FokI restriction-modification system II. Presence of two domains in FokI methylase responsible for modification of different DNA strands. J. Biol. Chem. 264, 5757–5761.

    PubMed  CAS  Google Scholar 

  8. Labbé, D., Höltke, H. J., and Lau, P. C. K. (1990) Cloning and characterization of two tandemly arranged DNA methyltransferase genes of Neisseria lactamica: an adenine-specific M·NlaIII and a cytosine-type methylase. Mol. Gen. Genet. 224, 101–110.

    Article  PubMed  Google Scholar 

  9. Studier, F. W. and Moffatt, B. A. (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 189, 113–130.

    Article  PubMed  CAS  Google Scholar 

  10. Maurizi, M. R., Trisler, P., and Gottesman, S. (1985) Insertional mutagenesis of the lon gene in Escherichia coli: lon is dispensable. J. Bacteriol. 164, 1124–1135.

    PubMed  CAS  Google Scholar 

  11. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual 2nd ed. Cold Spring harbor Laboratory, Cold Spring Harbor N. Y.

    Google Scholar 

  12. Tabor, S. and Richardson, C. C. (1985) A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc. Natl. Acad. Sci. USA 82, 1074–1078.

    Article  PubMed  CAS  Google Scholar 

  13. Caserta, M., Zacharias, W., Nwankwo, D., Wilson, G. G., and Wells, R. D. (1987) Cloning, sequencing, in vivo promoter mapping, and expression in Escherichia coli of the gene for the HhaI methyltransferase. J. Biol. Chem. 262, 4770–4777.

    PubMed  CAS  Google Scholar 

  14. Szomolanyi, E., Kiss, A., and Venetianer, P. (1980) Cloning the modification methylase gene of Bacillus sphaericus R in Escherichia coli. Gene 10, 219–225.

    Article  PubMed  CAS  Google Scholar 

  15. Belfort, M., Pedersen-Lane, J., West, J., Ehrenman, D., Maley, K, Chu, G. and Maley, F. (1985) Processing of the intron-containing thymidylate synthase (td) gene of phage T4 is at the RNA level. Cell 41, 375–382.

    Article  PubMed  CAS  Google Scholar 

  16. Hinton, D. (1989) Transcript analyses of the uvsX-40–41 region of bacteriophage T4. Changes in the RNA as infection proceeds. J. Biol. Chem. 264, 14432–14439.

    PubMed  CAS  Google Scholar 

  17. Kaczorowski, T. and Sektas, M. (1996) Rapid removal of unincorporated label and proteins from DNA sequencing reactions. Mol. Biotechnol. 5, 177–181.

    Google Scholar 

  18. Schlossman, D. M., Schmid, S. L., Brael, W. A. and Rothman, J. E. (1984) An enzyme that removes clathrin coats: purification of an uncoating ATPase. J. Cell. Biol. 99, 723–733.

    Article  PubMed  CAS  Google Scholar 

  19. Weber, K. and Osborn, M. (1969) The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J. Biol. Chem. 244, 4406–4412.

    PubMed  CAS  Google Scholar 

  20. Lisser, S. and Margalit, H. (1993) Compilation of E. coli mRNA promoter sequences. Nucl. Acids Res. 21, 1507–1516.

    Article  PubMed  CAS  Google Scholar 

  21. Baneyx, F. and Georgiou, G. (1990) In vivo degradation of secreted fusion proteins by the Escherichia coli outer membrane protease OmpT. J. Bacteriol. 172, 491–494.

    PubMed  CAS  Google Scholar 

  22. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriphage T4. Nature 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  23. Liberek, K., Osipiuk, J., Zylicz, M., Ang, D., Skorko, J., and Georgopoulos, G. (1990) Physical interactions between bacteriophage and Escherichia coli proteins required for initiation of lambda DNA replication. J. Biol. Chem., 265, 3022–3029.

    PubMed  CAS  Google Scholar 

  24. Wolfes, H., Fliess, A., Winkler, F. and Pingoud, A. (1986) Cross-linking of bromodeoxyuridine-substituted oligonucleotides to the EcoRI and EcoRV restriction endonucleases. Eur. J. Biochem. 159, 267–273.

    Article  PubMed  CAS  Google Scholar 

  25. Seeman, N. C., Rosenberg, J. M. and Rich, A. (1976) Sequence-specific recognition of double helical nucleic acids by proteins. Proc. Natl. Acad. Sci. USA 73, 804–808.

    Article  PubMed  CAS  Google Scholar 

  26. Riordan, J. F. (1973) Functional arginyl residues in carboxypeptidase A. Modification with butanedione. Biochemistry-USA 12, 3915–3923.

    Article  CAS  Google Scholar 

  27. Wilkinson, G. N. (1961) Statistical estimations in enzyme kinetics. Biochem. J. 80, 324–332.

    PubMed  CAS  Google Scholar 

  28. Chung, C. H., Waxman, L. and Goldberg, A. L. (1983) Studies of the protein encoded by the lon mutation, capR9, in Escherichia coli. A labile form of the ATP-dependent protease La that inhibits the wild type protease. J. Biol. Chem. 258, 215–221.

    PubMed  CAS  Google Scholar 

  29. Kaczorowski, T. (1991) Characterization of the cloned FokI methyltransferase from Flavobacterium okeanokoites. Ph.D. Thesis, University of Gdansk.

  30. Smith, H. O. and Kelly, S. V. (1984) in Razin, A., Cedar, H., and Riggs, A.D. (eds), DNA Methylation: Biochemistry and Biological Significance, Springer-Verlag, New York, pp. 39–71.

    Google Scholar 

  31. Wilson, G. G. (1991) Organization of restriction-modification systems. Nucl. Acids Res. 19, 2539–2566.

    Article  PubMed  CAS  Google Scholar 

  32. Kaczorowski, T., Skowron, P., and Podhajska, A. J. (1989) Purification and characterization of the FokI restriction endonuclease. Gene 80, 209–216.

    Article  PubMed  CAS  Google Scholar 

  33. Skowron, P., Kaczorowski, T., Tucholski, J., and Podhajska, A.J. (1993) Atypical DNA-binding properties of class-IIS restriction endonucleases: evidence for recognition of the cognate sequence by FokI monomer. Gene 125, 1–10.

    Article  PubMed  CAS  Google Scholar 

  34. Sektas, M., Kaczorowski, T., and Podhajska, A. J. (1992) Purification and properties of the MboII, a class-IIS restriction endonuclease. Nucl. Acids Res. 20, 433–438.

    Article  PubMed  CAS  Google Scholar 

  35. Sektas, M., Kaczorowski, T., and Podhajska, A. J. (1995) Interaction of the MboII restriction endonuclease with DNA. Gene 157, 181–185.

    Article  PubMed  CAS  Google Scholar 

  36. Tucholski, J., Skowron, P. M., and Podhajska, A. J. (1995) MmeI, a class-IIS restriction endonuclease: purification and characterization. Gene 157, 87–92.

    Article  PubMed  CAS  Google Scholar 

  37. Hanish, J. and McClelland, M. (1988) Activity of DNA modification and restriction enzymes in KGB, a potassium glutamate buffer. Gene Anal. Techn. 5, 105–107.

    Article  CAS  Google Scholar 

  38. Lusk, J. E., Williams, J. P., and Kennedy, E. P. (1968) Magnesium and the growth of Escherichia coli. J. Biol. Chem. 243, 2618–2624.

    PubMed  CAS  Google Scholar 

  39. McClelland, M., Nelson, M., and Cantor, C. R. (1985) Purification of MboII methylase (GAAGmA) from Moraxella bovis: site specific cleavage of DNA at nine and ten base pair sequences. Nucl. Acids Res. 13, 7171–7182.

    Article  PubMed  CAS  Google Scholar 

  40. Sugisaki, H., Yamamoto, K., and Takanami, M. (1991) The HgaI restriction-modification system contains two cytosine methylase genes responsible for modification of different DNA strands. J. Biol. Chem. 266, 13952–13957.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadeusz Kaczorowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaczorowski, T., Sektas, M., Skowron, P. et al. The FokI methyltransferase from Flavobacterium okeanokoites . Mol Biotechnol 13, 1–15 (1999). https://doi.org/10.1385/MB:13:1:1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MB:13:1:1

Index Entries

Navigation