Skip to main content
Log in

Lack of association of HIV-1 biological or molecular properties with neurotropism for brain cells

  • Original Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Despite HAART, a significant number of HIV-1-infected patients develop neurological complications. However, the presence of specific neurotropic HIV-1 strains, the extent of viral replication in the brain, and the type of cells infected remain controversial issues. To address this controversy we have analyzed different V3 loop sequences of viral isolates from four vertically HIV-1-infected children who developed HIV-1-related encephalopathy. Moreover, we have determined that some biological and molecular properties of HIV-1 might contribute to AIDS neurological dysfunctions. We detected very different HIV-1 isolates (X4 and R5) in the brain despite no great differences in clinical, pathological, or immunological parameters. In vitro, no differences in replicative competence in glial or neuroblastoma cells were observed between virus isolated from the blood of children with or without clinical neurological symptoms. The expression of both CXCR4 and CCR5 RNAs was observed in the brain independently of HIV-1 infection and viral strain predominant in this location. Our results failed to show a particular phenotypic property of the HIV-1 virus that might explain its neurovirulence and/or neurotropism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ait-Khaled M., McLaughlin J. E., Johnson M. A., and Emery V. C. (1995) Distinct HIV-1 long terminal repeat quasi-species present in nervous tissues compared to that in lung, blood and lymphoid tissues of an AIDS patient. AIDS 9, 675–683.

    Article  PubMed  CAS  Google Scholar 

  • Albright A. V., Shieh J. T., Itoh T., Lee B., Pleasure D., O'Connor M. J., et al. (1990) Microglia express CCR5, CXCR4, and CCR3, but of these, CCR5 is the principal coreceptor for human immunodeficiency virus type 1 dementia isolates. J. Virol. 73, 205–213.

    Google Scholar 

  • Alvarez Losada S., Canto-Nogues C., and Muñoz-Fernández M. A. (2002) A new possible mechanism of human immunodeficiency virus type 1 infection of neural cells. Neurobiol. Dis. 11, 469–478.

    Article  PubMed  CAS  Google Scholar 

  • An S. F., Groves M., Gray F., and Scaravilli F. (1999) Early entry and widespread cellular involvement of HIV-1 DNA in brain of HIV-1 positive asymptomatic individuals. J. Neuropathol. Exp. Neurol. 58, 1156–1162.

    PubMed  CAS  Google Scholar 

  • Bagasra O, Lavi E., Bobroski L., Khalili K., Pestaner J. P., Tawadros, R., and Pomerantz R. J. (1996) Cellular reservoirs of HIV-1 in the central nervous system of infected individuals: identification by the combination of in situ polymerase chain reaction andimmuno histochemistry. AIDS 10, 573–585.

    Article  PubMed  CAS  Google Scholar 

  • Bajetto A., Bonavia R., Barbero S., Florio T., Costa A., and Schettini G. (1999) Expression of chemokine receptors in the rat brain. Ann. N.Y. Acad. Sci. 876, 201–209.

    Article  PubMed  CAS  Google Scholar 

  • Balluz I. M., Farrell M. A., Kay E., Staunton M. J., Keating J. N., Sheils O., Cosby S., et al. (1996) Colocalisation of human immunodeficiency virus and human cytomegalovirus infection in brain autopsy tissue from AIDS patients. Jr. J. Med. Sci. 165, 133–138.

    CAS  Google Scholar 

  • Bouwman F. H., Skolasky R. L., Hes D., Selnes O. A., Glass J. D., Nance-Sproson T. E., et al. (1998) Variable progression of HIV-associated dementia. Neurology 50, 1814–1820.

    PubMed  CAS  Google Scholar 

  • Budka H. (1989) Human immunodeficiency virus (HIV)-induced disease of the central nervous system: pathology and implications for pathogenesis. Acta Neuropathol. 77, 225–236.

    Article  PubMed  CAS  Google Scholar 

  • Canto-Nogues C., Hockley D., Grief C., Ranjbar S., Bootman J., Almond N., and Herrera I. (2001a) Ultrastructural localization of the RNA of immunodeficiency viruses using electron microscopy in situ hybridization and in vitroinfected lymphocytes. Micron, 32, 579–589.

    Article  PubMed  CAS  Google Scholar 

  • Canto-Nogues C., Sanchez-Ramon S., Alvarez S., Lacruz C. and Muñoz-Fernández M. A. (2005) HIV-1 infection of neurons might account for progressive HIV-1-associated encephalopathy in children. J. Mol. Neurosci. 27, 79–89.

    Article  PubMed  CAS  Google Scholar 

  • Chang J., Jozwiak R., Wang B., Ng T., Ge Y. C., Bolton W., et al. (1998) Unique HIV type 1 V3 region sequences derived from six different regions of brain: region-specific evolution within host-determined quasi-species. AIDS Res. Hum. Retroviruses 14, 25–30.

    PubMed  CAS  Google Scholar 

  • Connor R. I., Sheridan K. E., Ceradini D., Choe S., and Landau N. R. (1997) Change in coreceptor use coreceptor use correlates with disease progression in HIV-1-infected individuals. J. Exp. Med. 185, 621–628.

    Article  PubMed  CAS  Google Scholar 

  • Deng H., Liu R., Ellmeier W., Choe S., Unutmaz D., Burkhart M., et al. (1996) Identification of a major coreceptor for primary isolates of HIV-1. Nature 381, 661–666.

    Article  PubMed  CAS  Google Scholar 

  • Di Stefano M., Monno L., Fiore J.R., Buccoliero G., Appice A., Perulli L. M. et al. (1998) Neurological disorders during HIV-1 infection correlate with viral load in cerebrospinal fluid but not with virus phenotype. AIDS 12, 737–743.

    Article  PubMed  Google Scholar 

  • Di Stefano M., Wilt S., Gray F., Dubois-Dalcq M., and Choidi F. (1996) HIV type 1 V3 sequences and the development of dementia during AIDS. AIDS Res. Hum. Retroviruses 12, 471–476.

    PubMed  Google Scholar 

  • Dick A. D., Pell M., Brew B. J., Foulcher E., and Sedgwick J. D. (1997) Direct ex vivo flow cytometric analysis of human microglial cell CD4 expression: examination of central nervous system biopsy specimens from HIV-seropositive patients and patients with other neurological disease. AIDS 11, 1699–1708.

    Article  PubMed  CAS  Google Scholar 

  • Ditmar M. T., Simmons G., Donaldson Y., Simmonds P., Clapham P. R., Schulz T. F., and Weiss R. A (1997) Biological characterization of human immunodeficiency virus type 1 clones derived from different organs of an AIDS patient by long-range PCR. J. Virol. 71, 5140–5147.

    Google Scholar 

  • Donaldson Y. K., Bell J. E., Holmes E. C., Hughes E. S., Brown H. K., and Simmonds P. (1994) In vivo distribution and cytopathology of variants of human immuno-deficiency virus type 1 showing restricted sequence variability in the V3 loop. J. Virol. 68, 5991–6005.

    PubMed  CAS  Google Scholar 

  • Ensoli F., Cafaro A., Fiorelli V., Vannelli B., Ensoli B., and Thiele C. J. (1995) HIV-1 infection of primary human neuroblasts. Virology 210, 221–225.

    Article  PubMed  CAS  Google Scholar 

  • Epstein L. G., Sharer L. R., Oleske J. M., Connor E. M., Goudsmit J., Bagdon L., et al. (1986) Neurologic manifestations of human immunodeficiency virus infection in children. Pediatrics 78, 678–687.

    PubMed  CAS  Google Scholar 

  • Fauci A. S. (1996) Resistance to HIV-1 infection: it's in the genes. Nat. Med. 2, 966–967.

    Article  PubMed  CAS  Google Scholar 

  • Galan I., Jimenez J. L., Gonzalez-Rivera M., De Jose M. I., Navarro M. L., Ramos J. T., et al. (2004) Virological phenotype switches under salvage therapy with lopinavirritonavir in heavly pretreated HIV-1 vertically infected children. AIDS 18, 247–255.

    Article  PubMed  CAS  Google Scholar 

  • Glass J. D., and Johnson R. T. (1996) Human immunode-ficiency virus and the brain. Proc. Assoc. Am. Physicians 108, 47–54.

    Google Scholar 

  • Gorry P. R., Bristol G., Zack J. A., Ritola K., Swanstrom R., Birch C. J., et al. (2001) Macrophage tropism of human immuodeficiency virus type 1 isolates from brain and lymphoid tissues predicts neurotropism independent of coreceptor specificity. J. Virol. 75, 10,073–10,089.

    Article  CAS  Google Scholar 

  • Gorry P. R., Taylor J., Holm G. H., Mehle A., Morgan T., Cayabyab M., et al. (2002) Increased CCR5 affinity and reduced CCR5/CD4 dependence of a neurovirulent primary human immunodeficiency virus type 1 isolate. J. Virol. 76, 6277–6292.

    Article  PubMed  CAS  Google Scholar 

  • Hesselgesser J., and Horuk R. (1999) Chemokine and chemokine receptor expression in the central nervous system. J. Neurovirol. 5, 13–26.

    PubMed  CAS  Google Scholar 

  • Keys B., Karis J., Fadeel B., Valentin A., Norkrans G., Hagberg L., and Chiodi F. (1993) V3 sequences of paired HIV-1 isolates from blood and cerebrospinal fluid cluster according to host and show variation related to the clinical stage of disease. Virology 196, 475–483.

    Article  PubMed  CAS  Google Scholar 

  • Koot M., Vos A. H., Keet R. P., de Goede R. E., Dercksen M. W., Terpstra F. G. et al. (1992) HIV-1 biological phenotype in long-term infected individuals evaluated with an MT-2 cocultivation assay. AIDS 6, 49–54.

    Article  PubMed  CAS  Google Scholar 

  • Korber B. T., Kunstman K. J., Patterson B. K., Furtado M., McEvilly M. M., Levy R., and Wolinsky S. M. (1994) Genetic differences between blood- and brain-derived viral sequences from human immunodeficiency virus type 1-infected patients: evidence of conserved elements in the V3 region of the envelope protein of brain-derived sequences. J. Virol. 68, 7467–7481.

    PubMed  CAS  Google Scholar 

  • Lavi E., Kolson D. L., Ulrich A. M., Fu L., and Gonzalez-Scarano F. (1998) Chemokine receptors in the human brain and their relationship to HIV infection. J. Neurovirol. 4, 301–311.

    Article  PubMed  CAS  Google Scholar 

  • Lawrence D. M., Durham L. C., Schwartz L., Seth P., Maric D., and Major E. O. (2004) Human immunodeficiency virus type 1 infection of human brain-derived progenitor cells. J. Virol. 78, 7319–7328.

    Article  PubMed  CAS  Google Scholar 

  • Lyman W. D., Kress Y., Kure K., Rashbaum W. K., Rubinstein A., and Soeiro R. (1990) Detection of HIV in fetal central nervous system tissue. AIDS 4, 917–920.

    Article  PubMed  CAS  Google Scholar 

  • Martin J., LaBranche C. C., and Gonzalez-Scarano F. (2001) Differential CD4/CCR5 utilization, gp120 conformation, and neutralization sensitivity between envelopes from a microglia-adapted human immunodeficiency virus type 1 and its parental isolate. J. Virol. 75, 3568–3580.

    Article  PubMed  CAS  Google Scholar 

  • Mashke M., Kastrup O., Esser S., Ross B., Hengge U., and Hufnagel A. (2000) Incidence and prevalence of neurological disorders associated with HIV since the intro-duction of highly active antiretroviral therapy (HAART). J. Neurol. Neurosurg. Psychiatry 69, 376–380.

    Article  Google Scholar 

  • McArthur J. C., Haughey N., Gartner S., Conant K., Pardo C., Nath A., and Sacktor N. (2003) Human immuno-deficiency virus-associated dementia: an evolving disease. J. Neurovirol. 9, 205–221.

    PubMed  CAS  Google Scholar 

  • Mueller C., Gershenfeld H. K., Lobe C. G., Okada C. Y., Bleackley R. C., and Weissman I. L. (1988) A high proportion of T lymphocytes that infiltrate H-2-incompatible heart allografts in vivo express genes encoding cytotoxic cell-specific serine proteases, but do not express the MEL-14-defined lymph node homing receptor. J. Exp. Med. 167, 1124–1136.

    Article  PubMed  CAS  Google Scholar 

  • Muñoz-Fernández M. A., Obregon E., Navarro J., Borner C., Gurbindo M. D., Sampelayo T. H., and Fernandez-Cruz E. (1996) Relationship of virologic, immunologic, and clinical parameters in infants with vertically acquired human immunodeficiency virus type 1 infection. Pediatr. Res. 40, 597–602.

    Article  PubMed  Google Scholar 

  • Nukuna A., Gendelman H. E., Limoges J., Rasmussen J., Poluektova L., Ghorpade A., and Persidsky Y. (2004) Levels of human immunodeficiency virus type 1 (HIV-1) replication in macrophages determines the severity of murine HIV-1 encephalitis. J. Neurovirol. 10 (Suppl. 1), 82–90.

    Article  PubMed  Google Scholar 

  • Nuovo G. J., Gallery F., MacConnell P., and Braun A. (1994) In situ detection of polymerase chain reaction-amplified HIV-1 nucleic acids and tumor necrosis factor-alpha RNA in the central nervous system. Am. J. Pathol. 144, 659–666.

    PubMed  CAS  Google Scholar 

  • Obregon E., Punzon C., Fernandez-Cruz E., Fresno M., and Muñoz-Fernández-Fernandez M. A. (1999) HIV-1 infection induces differentiation of immature neural cells through autocrine tumor necrosis factor and nitric oxide production. Virology 261, 193–204.

    Article  PubMed  CAS  Google Scholar 

  • Pierson T., McArthur J., and Siliciano R. F. (2000) Reservoirs for HIV-1: mechanisms for viral persistence in the presence of antiviral immune responses and antiretroviral therapy. Annu. Rev. Immunol. 18, 665–708.

    Article  PubMed  CAS  Google Scholar 

  • Power C., and Johnson R. T. (2001) Neuroimmune and neurovirological aspects of human immunodeficiency virus infection. Adv. Virus Res. 56, 389–433.

    PubMed  CAS  Google Scholar 

  • Power C., Gill M. J., and Johnson R. T. (2002) Progress in clinical neurosciences. The neuropathogenesis of HIV infection: host-virus interaction and the impact of therapy. Can. J. Neurol. Sci. 29, 19–32.

    PubMed  CAS  Google Scholar 

  • Power C., McArthur J. C., Johnson R. T., Griffin D. E., Glass J. D., Perryman S., and Chesebro B. (1994) Demented and nondemented patients with AIDS differ in brain-derived human immunodeficiency virus type 1 envelope sequences. J. Virol. 68, 4643–4649.

    PubMed  CAS  Google Scholar 

  • Power C., McArthur J. C., Nath A., Wehrly K., Mayne M., Nishio J., et al. (1998) Neuronal death induced by brain-derived human immunodeficiency virus type 1 envelope genes differes between demented and nondemented AIDS patients. J. Virol 72, 9045–9053.

    PubMed  CAS  Google Scholar 

  • Reddy R. T., Achim C. L., Sirko D. A., Tehranchi S., Kraus F. G., Wong-Staal F., and Wiley C. A. (1996) Sequence analysis of the V3 loop in brain and spleen of patients with HIV encephalitis. AIDS Res. Hum. Retroviruses 12, 477–482.

    Article  PubMed  CAS  Google Scholar 

  • Sabri F., Tresoldi E., Di Stefano M., Polo S., Monaco M. C., Verani A., et al. (1999) Nonproductive human immuno-deficiency virus type 1 infection of human fetal astrocytes: independence from CD4 and major chemokine receptors. Virology 264, 370–384.

    Article  PubMed  CAS  Google Scholar 

  • Saito Y., Sharer L. R., Epstein L. G., Michaels J., Mintz M., Louder M., et al. (1994) Overexpression of nef as a marker for restricted HIV-1 infection of astrocytes in postmortem pediatric central nervous tissues. Neurology 44, 474–481.

    PubMed  CAS  Google Scholar 

  • Sanders V. J., Pittman C. A., White M. G., Wang G, Wiley C. A., and Achim C. L. (1998) Chemokines and receptors in HIV encephalitis. AIDS 12, 1021–1026.

    Article  PubMed  CAS  Google Scholar 

  • Simmons G., Clapham P. R., Picard L., Offord R. E., Rosenkilde M. M., Schwartz T. W., et al. (1997) Potent inhibition of HIV-1 infectivity in macrophages and lymphocytes by a novel CCR5 antagonist. Science 276, 276–279.

    Article  PubMed  CAS  Google Scholar 

  • Simpson D. M. (1999) Human immunodeficiency virus-associated dementia: review of pathogenesis, prophylaxis, and treatment studies of zidovudine therapy. Clin. Infect. Dis. 29, 19–34.

    PubMed  CAS  Google Scholar 

  • Smit T. K., Wang B., Ng T., Osborme R., Brew B., and Saksena N. K. (2001) Varied tropism of HIV-1 isolates derived from different regions of a dult brain cortex discriminate between patients with and without AIDS dementia complex (ADC): evidence for neurotropic HIV variants. Virology 279, 509–526.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K., Wesselingh S. L., Griffin D. E., Mc Arthur J. C., Johnson R. T., and Glass J. D. (1996) Localization of HIV-1 in human brain using polymerase chain reaction/in situ hybridization and immunocytochemistry. Ann. Neurol. 39, 705–711.

    Article  PubMed  CAS  Google Scholar 

  • Trujillo J. R., Wang W. K., Lee T. H., and Essex M. (1996) Identification of the envelope V3 loop as a determinant of a CD4-negative neuronal cell tropism for HIV-1. Virology 217, 613–617.

    Article  PubMed  CAS  Google Scholar 

  • van der Meer P., Ulrich A. M., Gonzalez-Scarano F., and Lavi E. (2000) Immunohistochemical analysis of CCR2, CCR3, CCR5, and CXCR4 in the human brain: potential mechanisms for HIV dementia. Exp. Mol. Pathol. 69, 192–201.

    Article  PubMed  CAS  Google Scholar 

  • Wesselingh S. L., and Thompson K. A. (2001) Immuno-pathogenesis of HIV-associated dementia. Curr. Opin. Neurol. 14, 375–379.

    Article  PubMed  CAS  Google Scholar 

  • Wiley C. A., Schrier R. D., Nelson J. A., Lampert P. W., and Oldstone M. B. (1986) Cellular localization of human immunodeficiency virus infection within the brains of acquired immune deficiency syndrome patients. Proc. Natl. Acad. Sci. U.S.A. 83, 7089–7093.

    Article  PubMed  CAS  Google Scholar 

  • Williams K. C., and Hickey W. F. (2002) Central nervous system damage, monocytes and macrophages, and neurological disorders in AIDS. Annu. Rev. Neurosci. 25, 537–562.

    Article  PubMed  CAS  Google Scholar 

  • Yi Y., Chen W., Frank I., Cutilli J., Singh A., Starr-Spires L., Sulcove J., et al. (2003) An unusual syncytia-inducting human immunodeficiency virus type 1 primary isolate from the central nervous system that is restricted to CXCR4, replicates efficiently in macrophages, and induces neuronal apoptosis. J. Neurovirol. 9, 432–441.

    PubMed  CAS  Google Scholar 

  • Yi Y., Lee C., Liu Q. H., Freedman B. D., and Collman R. G. (2004) Chemokine receptor utilization and macrophage signaling by human immunodeficiency virus type 1 gp120: Implications for neuropathogenesis. J. Neurovirol. 10 (Suppl. 1) 91–96.

    Article  PubMed  CAS  Google Scholar 

  • Zheng J., Ghorpade A., Niemann D., Cotter R. L., Thylin M. R., Epstein L, et al. (1999) Lymphotropic virons affect chemokine receptor-mediated neural signaling and apoptosis: implications for human immunodeficiency virus type 1-associated dementia. J. Vitrol. 73, 8256–8267.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ma Angeles Muñoz-Fernández.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Álvarez, S., Jiménez, J.L., Serramía, M.J. et al. Lack of association of HIV-1 biological or molecular properties with neurotropism for brain cells. J Mol Neurosci 29, 131–144 (2006). https://doi.org/10.1385/JMN:29:2:131

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:29:2:131

Index Entries

Navigation