Skip to main content
Log in

Association of MTHFR gene polymorphism C677T with susceptibility to late-onset alzheimer’s disease

  • Original Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Increased total plasma homocysteine (t-Hcy) levels are found to be associated with Alzheimer’s disease (AD). Because the methylenetetrahydrofolate reductase (MTHFR) gene encodes a key enzyme that influences the metabolism of homocysteine, it has been considered as a possible genetic risk factor for AD. Although the MTHFR gene C677T polymorphism has a significant impact on reducing enzyme activity and increasing t-Hcy concentrations, the association between the C677T polymorphism and AD remains inconclusive. To determine whether the MTHFR gene C677T polymorphism contributes to the risk for late-onset AD (LOAD) in Chinese, we have investigated 104 sporadic LOAD patients and 130 healthy controls. The strong associations of the TT genotype and T-allele with LOAD (p=0.001, OR=5.73 95% CI 1.85–17.72, and p=0.002, OR=1.89 95% CI 1.25–2.86) were found. After stratifying by apolipoprotein E allele 4 (APOE ɛ4) status, increased LOAD risks associated with the TT genotype only in the APOE ɛ4 noncarriers (χ2=8.92, df=1, p=0.003) and with the T-allele in either group (χ2=5.18, df=1, p=0.023 and χ2=5.53, df=1, p=0.019) were seen. These results suggest that as an APOE ɛ4 allele-dependent risk factor, the MTHFR gene C677T polymorphism is involved in developing LOAD in Chinese.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • American Psychiatric Association (1994) Diagnostic and Staistical Manual of Mental Disorders, 4th ed., American Psychiatric Association, Washington, D.C.

    Google Scholar 

  • Anello G., Gueant-Rodriguez R. M., Bosco P., Gueant J. L., Romano A., Namour B., et al. (2004) Homocysteine and methylenetetrahydrofolate reductase polymorphism in Alzheimer’s disease. Neuroreport 15, 859–861.

    Article  PubMed  CAS  Google Scholar 

  • Blacker D., Bertram L., Saunders A. J., Moscarillo T. J., Albert M. S., Wiener H., et al. (2003) Results of a high-resolution genome screen of 437 Alzheimer’s disease families. Hum. Mol. Genet. 12, 23–32.

    Article  PubMed  CAS  Google Scholar 

  • Blacker D., Haines J. L., Rodes L., Terwedow H., Go R. C. P., Harrell L. E., et al. (1997) ApoE-4 and age of onset of Alzheimer’s disease: the NIMH genetics initiative. Neurology 48, 139–147.

    PubMed  CAS  Google Scholar 

  • Boers G. H., Smals A. G., Trijbels F. J., Fowler B., Bakkeren J. A., Schoonderwaldt H. C., et al. (1985) Heterozygosity for homocystinuria in premature peripheral and cerebral occlusive arterial disease. N. Engl. J. Med. 313, 709–715.

    Article  PubMed  CAS  Google Scholar 

  • Brunelli T., Bagnoli S., Giusti B., Nacmias B., Pepe G., Sorbi S., and Abbate R. (2001) The C677T methylenetetrahydrofolate reductase mutation is not associated with Alzheimer’s disease. Neurosci. Lett. 315, 103–105.

    Article  PubMed  CAS  Google Scholar 

  • Frosst P., Blom H. J., Milos R., Goyette P., Sheppard C. A., Matthews R. G., et al. (1995) A candidate genetic risk fact or for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat. Genet. 10, 111–113.

    Article  PubMed  CAS  Google Scholar 

  • Goyette P., Pai A., Milos R., Frosst P., Tran P., Chen Z., et al. (1998) Gene structure of human and mouse methylenetetrahydrofolate reductase (MTHFR). Mamm. Genome 9, 652–656.

    Article  PubMed  CAS  Google Scholar 

  • Goyette P., Sumner J. S., Milos R., Duncan A. M., Rosenblatt D. S., Matthews R. G., Rozen R. (1994) Human methylenetetrahydrofolate reductase: isolation of cDNA, mapping and mutation identification. Nat. Genet. 7, 195–200.

    Article  PubMed  CAS  Google Scholar 

  • Gudnason V., Stansbie D., Scott J., Bowron A., Nicaud V., and Humphries S. (1998) C677T (thermolabile alanine/valine) polymorphism in methylenetetrahydrofolate reductase (MTHFR): its frequency and impact on plasma homocysteine concentration in different European populations. EARS group. Atherosclerosis 136, 347–354.

    Article  PubMed  CAS  Google Scholar 

  • Hiltunen M., Mannermaa A., Thompson D., Easton D., Pirskanen M., Helisalmi S., et al. (2001) Genome-wide linkage disequilibrium mapping of late-onset Alzheimer’s disease in Finland. Neurology 57, 1663–1668.

    PubMed  CAS  Google Scholar 

  • Ho P. I., Collins S. C., Dhitavat S., Ortiz D., Ashline D., Rogers E., and Shea T. B. (2001) Homocysteine potentiates beta-amyloid neurotoxicity: role of oxidative stress. J. Neurochem. 78, 249–253.

    Article  PubMed  CAS  Google Scholar 

  • Hu X. F., Zhang X. R., Xuan A., and Cao X. R. (2002) Association between Apolipoprotein E gene polymorphism and the patients with persistent vegetative state in the Chinese. Acta Genet. Sinica 29, 757–760.

    CAS  Google Scholar 

  • Jacques P. F., Bostom A. G., Williams R. R., Ellison R. C., Eckfeldt J. H., Rosenberg I. H., et al. (1996) Relation between folate status, a common mutation in methylenetetrahydrofolate reductase, and plasma homocysteine concentrations. Circulation 93, 7–9.

    PubMed  CAS  Google Scholar 

  • Kluijtmans L. A., van den Heuvel L. P., Boers G. H., Frosst P., Stevens E. M., van Oost B. A., et al. (1996) Molecular genetic analysis in mild hyperhomocysteinemia: a common mutation in the methylenetetrahydrofolate reductase gene is a genetic risk factor for cardiovascular disease. Am. J. Hum. Genet. 58, 35–41.

    PubMed  CAS  Google Scholar 

  • Kruman I. I., Kumaravel T. S., Lohani A., Pedersen W. A., Cutler R. G., Kruman Y., et al. (2002) Folic acid deficiency and homocysteine impair DNA repair in hippocampal neurons and sensitize them to amyloid toxicity in experimental models of Alzheimer’s disease. J. Neurosci. 22, 1752–1762.

    PubMed  CAS  Google Scholar 

  • McIlroy S. P., Dynan K. B., Lawson J. T., Patterson C. C., and Passmore A. P. (2002) Moderately elevated plasma homocysteine, methylenetetrahydrofolate reductase genotype, and risk for stroke, vascular dementia, and Alzheimer disease in Northern Ireland. Stroke 33, 2351–2356.

    Article  PubMed  CAS  Google Scholar 

  • McKhann G., Drachman D., Folstein M., Datzman R., Price D., and Stadlan E. M. (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34, 939–944.

    PubMed  CAS  Google Scholar 

  • Myers A., Wavrant De-Vrieze F., Holmans P., Hamshere M., Crook R., Compton D., et al. (2002) Full genome screen for Alzheimer disease: stage II analysis. Am. J. Med. Genet. 114, 235–244.

    Article  PubMed  Google Scholar 

  • Prasmusinto D., Skrablin S., Fimmers R., and van der Ven K. (2004) Ethnic differences in the association of factor V Leiden mutation and the C677T methylenetetrahydrofolate reductase gene polymorphism with preeclampsia. Eur. J. Obstet. Gynecol. Reprod. Biol. 112, 162–169.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg N., Murata M., Ikeda Y., Opare-Sem O., Zivelin A., Geffen E., and Seligsohn U. (2002) The frequent 5,10-methylenetetrahydrofolate reductase C677T polymorphism is associated with a common haplotype in whites, Japanese, and Africans. Am. J. Hum. Genet. 70, 758–762.

    Article  PubMed  CAS  Google Scholar 

  • Saunders A. M., Strittmatter W. J., Schmechel D., George-Hyslop P. H., Pericak-Vance M. A., Joo S. H., et al. (1993) Association of apolipoprotein E allele ɛ4 with late-onset familial and sporadic Alzheimer’s disease. Neurology 43, 1467–1472.

    PubMed  CAS  Google Scholar 

  • Seripa D., Forno G. D., Matera M. G., Gravina C., Margaglione M., Palermo M. T., et al. (2003) Methylenetetrahydrofolate reductase and angiotensin conver ting enzyme gene polymorphisms in two genetically and diagnostically distinct cohort of Alzheimer patients. Neurobiol. Aging 24, 933–939.

    Article  PubMed  CAS  Google Scholar 

  • Tysoe C., Galinsky D., Robinson D., Brayne C. E., Easton D. F., Huppert F. A., et al. (1997) Analysis of alpha-1 antichymotrypsin, presenilin-1, angiotensin-converting enzyme, and methylenetetrahydrofolate reductase loci as candidates for dementia. Am. J. Med. Genet. 74, 207–212.

    Article  PubMed  CAS  Google Scholar 

  • Wiemels J. L., Smith R. N., Taylor G. M., Eden O. B., Alexander F. E., Greaves M. F.; United Kingdom Childhood Cancer Study investigators (2001) Methylenetetrahydrofolate reductase (MTHFR) polymorphisms and risk of molecularly defined subtypes of childhood acute leukemia. Proc. Natl. Acad. Sci. U. S. A. 98, 4004–4009.

    Article  PubMed  CAS  Google Scholar 

  • Zuliani G., Ble’ A., Zanca R., Munari M. R., Zurlo A., Vavalle C., et al. (2001) Genetic polymorphisms in older subjects with vascular or Alzheimer’s dementia. Acta Neurol. Scand. 103, 304–308.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, B., Jin, F., Kan, R. et al. Association of MTHFR gene polymorphism C677T with susceptibility to late-onset alzheimer’s disease. J Mol Neurosci 27, 23–27 (2005). https://doi.org/10.1385/JMN:27:1:023

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:27:1:023

Index Entries

Navigation