Skip to main content
Log in

Partners for adenosine A1 receptors

  • Review
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

G protein-coupled receptors (GPCRs) are targets for therapy in a variety of neurological diseases. Using adenosine A1 receptors (A1Rs) as paradigm of GPCRs, this review focuses on how protein-protein interactions, from monomers to heteromers, can contribute to hormone/neurotransmitter/neuromodulator regulation. The interaction of A1Rs with other membrane receptors, enzymes, and adaptor and scaffolding proteins is relevant for receptor traffic, internalization, and desensitization, and A1Rs are extremely important in driving signaling through different intracellular pathways. There is even the possibility of linking together GPCR heteromeric complexes with ion channel receptors in a receptor mosaic that might have special integrative value and might constitute the molecular basis for learning and memory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agnati L., Ferré S., Lluis C., Franco R., and Fuxe K. (2003) Molecular mechanisms and therapeutical implications of intramembrane receptor-receptor interactions among heptahelical receptors with examples from the striato-pallidal GABA neurons Pharmacol. Rev. 55, 509–550.

    Article  PubMed  CAS  Google Scholar 

  • Burgueño J., Canela E. I., Mallol J., Lluis C., Franco R., and Ciruela F. (2004) Mutual regulation between metabotropic glutamate type 1 (receptor and caveolin proteins: from traffic to constitutive activity. Exp. Cell Res. 300, 23–34.

    Article  PubMed  CAS  Google Scholar 

  • Burgueño J., Enrich C., Canela E. I., Mallol J., Lluis C., Franco R., and Ciruela F. (2003) Metabotropic glutamate type 1( receptor localizes in low density caveolin-rich plasma membrane fractions. J. Neurochem. 86, 785–791.

    Article  PubMed  CAS  Google Scholar 

  • Casadó V., Canti C., Mallol J., Canela E. I., Lluis C., and Franco R. (1990) Solubilization of A1 adenosine receptor from pig brain. Characterization and evidence of the role of the cell membrane on the coexistence of the high and low- affinity states J. Neurosci. Res. 26, 461–473.

    Article  PubMed  Google Scholar 

  • Ciruela F.; Casadó V.; Mallol J.; Canela E. I., Lluis C., and Franco R. (1995) Immunological identification of A1 adenosine receptors in brain cortex. J. Neurosci. Res. 23, 818–828.

    Article  Google Scholar 

  • Ciruela F., Escriche M., Burgueño J., Angulo E., Casadó V., Soloviev M. M., et al. (2001) Metabotropic glutamate 1α and adenosine A1 receptors assemble into functionally interacting complexes. J. Biol. Chem. 276, 18345–18351.

    Article  PubMed  CAS  Google Scholar 

  • Ciruela F., Saura C., Canela E. I., Mallol J., Lluis C., and Franco R. (1996) A denosine deaminase affects signaling by interacting with cell surface receptors. FEBS Lett. 380, 219–223.

    Article  PubMed  CAS  Google Scholar 

  • Ciruela F., Saura C., Canela E. I., Mallol J., Lluis C., and Franco R. (1997) Ligand-induced phosphorylation, clustering and desensitization of A1 adenosine receptors. Mol. Pharmacol. 52, 788–797.

    PubMed  CAS  Google Scholar 

  • Dennis D. M., Shryock J. C., and Belardinelli L. (1995) Homologous desensitization of the A1-adenosine receptor system in the guinea pig atrioventricular node. J. Pharmacol. Exp. Ther. 272, 1024–1035.

    PubMed  CAS  Google Scholar 

  • Dunwiddie T. V. (1985) The physiological role of adenosine in the central nervous system. Int. Rev. Neurobiol. 27, 63–139.

    Article  PubMed  CAS  Google Scholar 

  • Dunwiddie T. V. and Masino S. A. (2001) The role and regulation of adenosine in the central nervous system. Annu. Rev. Neurosci. 24, 31–55.

    Article  PubMed  CAS  Google Scholar 

  • elHashim A., D’Agostino B., Matera M. G., and Page C. (1996) Characterization of adenosine receptors involved in adenosine-induced bronchoconstriction in allergic rabbits. Br. J. Pharmacol. 119, 1262–1268.

    CAS  Google Scholar 

  • Escriche M., Burgueño J, Ciruela F., Canela E. I., Mallol J. Enrich C., et al. (2003) Ligand-induced caveolaemediated internalization of A1 adenosine receptors: morphological evidence of endosomal sorting and receptor recycling. Exp. Cell Res. 285, 72–90.

    Article  PubMed  CAS  Google Scholar 

  • Fernández M., Svenningsson P., and Fredholm B. B. (1996) Adaptive changes in adenosine receptors following long-term treatment with the adenosine receptor agonist R-phenylisopropyl adenosine. Life Sci. 9, 769–776.

    Article  Google Scholar 

  • Ferré S., Ciruela F., Woods A. S., Canals M., Burgueño J., Marcellino D., et al. (2003) Glutamate mGlu5-adenosine A2A-dopamine D2 receptor interactions in the striatum. Implications for drug therapy in neuro-psychiatric disorders and drug abuse. Med. Chem. CNS Agents 3, 1–26.

    Google Scholar 

  • Ferré S., Fredholm B. B., Morelli M., Popoli P., and Fuxe K. (1997) A denosine-dopamine receptor-receptor interactions as an integrative mechanism in the basal ganglia. Trends Neurosci. 20, 482–487.

    Article  PubMed  Google Scholar 

  • Ferré S., Karcz-Kubicha M., Hope B. T., Popoli P., Burgueño J, Gutiérrez M. A., et al. (2002) Synergistic interaction between adenosine A2A and glutamate mGlu5 receptors: implications for striatal neuronal function Proc. Natl. Acad. Sci. U. S. A. 99, 11940–11945.

    Article  PubMed  CAS  Google Scholar 

  • Ferré S., Torvinen M., Antoniou K., Irenius E., Civelli O., Arenas E, et al. (1998) Adenosine A1 receptor-mediated modulation of dopamine D1 receptors in stably cotransfected fibroblast cells. J. Biol. Chem. 273, 4718–4724.

    Article  PubMed  Google Scholar 

  • Ferré S., von Euler G., Johansson B., Fredholm B. B., and Fuxe K. (1991) Stimulation of high-affinity adenosine A2 receptors decreases the affinity of dopamine D2 receptors in rat striatal membranes. Proc. Natl. Acad. Sci. U. S. A. 88, 7238–7241.

    Article  PubMed  Google Scholar 

  • Figler R. A., Graber S. G., Lindorfer M. A., Yasuda H., Linden J., and Garrison J. C. (1996) Reconstitution of recombinant bovine A1 adenosine receptors in Sf9 cell membranes with recombinant G proteins of defined composition. Mol. Pharmacol. 50, 1587–1595.

    PubMed  CAS  Google Scholar 

  • Franco R., Canals M., Marcellino D., Ferré S., Agnati L., Mallol J., et al. (2003) Regulation of heptaspanning-heptaspanningmembrane-receptor function by membrane-dimerization and clustering. Trends Biochem. Sci. 28, 238–243.

    Article  PubMed  CAS  Google Scholar 

  • Franco R., Casadó V., Ciruela F., Mallol J., Lluis C., and Canela E. I. (1996) The cluster-arranged cooperative model: a model that accounts for the binding kinetics to A1 adenosine receptors. Biochemistry 35, 3007–3015

    Article  PubMed  CAS  Google Scholar 

  • Franco R., Casadó V., Ciruela F., Saura C., Mallol J., Canela E. I., and Lluis C. (1997) Cell surface adenosine deaminase: much more than an ectoenzyme. Prog. Neurobiol. 52, 283–294.

    Article  PubMed  CAS  Google Scholar 

  • Franco R., Ferré S., Agnati L., Torvinen M., Ginés S., Hillion J., et al. (2000) Evidence for adenosine/dopamine receptor interactions: indications for heteromerization. Neuropsychopharmacology 23, S50-S59.

    Article  PubMed  CAS  Google Scholar 

  • Froldi G. and Belardinelli L. (1990) Species-dependent effects of adenosine on heart rate and atrioventricular nodal conduction. Mechanism and physiological implications. Circ. Res. 67, 960–978.

    PubMed  CAS  Google Scholar 

  • Genazzani A. A., L’Episcopo M. R., Casabona G., Shinozaki H., and Nicoletti F. (1994) (2S, 1’R,2’R,3’R)-2-(2,3-dicarboxycyclopropyl) glycine positively modulates metabotropic glutamate receptors coupled to polyphosphoinositide hydrolysis in rat hippocampal slices. Brain. Res. 659, 10–16.

    Article  PubMed  CAS  Google Scholar 

  • Ginés S., Ciruela F., Burgueño J., Casadó V., Canela E. I., Mallol J., et al. (2001) Involvement of caveolin in ligand-induced recruitment and internalization of A1 adenosine receptors and adenosine deaminase in an epithelial cell line. Mol. Pharmacol. 59, 1314–1323.

    PubMed  Google Scholar 

  • Ginés S., Hillion J., Torvinen M., Le Crom S., Casado V., Canela E. I., et al. (2000) Dopamine D1 and adenosine A1 receptors form functionally interacting heteromeric complexes Proc. Natl. Acad. Sci. U. S. A. 97, 8606–8611.

    Article  PubMed  Google Scholar 

  • Green A., Johnson J. L., and Milligan G. (1990) Downregulation of Gi sub-types by prolonged incubation of adipocytes with an A1 adenosine receptor agonist. J. Biol. Chem. 265, 5206–5210.

    PubMed  CAS  Google Scholar 

  • Green A., Milligan G., and Dobias S. B. (1992) Gi down-regulation as a mechanism for heterologous desensitization in adipocytes. J. Biol. Chem. 267, 3223–3229.

    PubMed  CAS  Google Scholar 

  • Herrera C., Casadó, V., Ciruela F., Schofield P., Mallol J., Lluís C., and Franco R. (2001) Adenosine A2B receptors behave as an alternative anchoring protein for cell surface adenosine deaminase in lymphocytes and cultured cells. Mol. Pharmacol.w 59, 127–134.

    CAS  Google Scholar 

  • Hillion J., Canals M., Torvinen M., Casado V., Scott R., Terasmaa A., et al. (2002) Coaggregation, cointernalization and codesensitization of adenosine A2a receptors and dopamine D2 receptors. J. Biol. Chem. 277, 18091–18097.

    Article  PubMed  CAS  Google Scholar 

  • Jockers R., Linder M. E., Hohenegger M., Nanoff C., Bertin B., Strosberg A. D., et al. (1994) Species difference in the G protein selectivity of the human and bovine A1-adenosine receptor. J. Biol. Chem. 269, 32077–32084.

    PubMed  CAS  Google Scholar 

  • Kameoka J., Tanaka T., Nojima Y., Schlossman S. F., and Morimoto C. (1993) Direct association of adenosine deaminase with a T cell activation antigen, CD26. Science 261, 466–469.

    Article  PubMed  CAS  Google Scholar 

  • Kimura M., Saitoh N., and Takahashi T. (2003) Adenosine A(1) receptor-mediated presynaptic inhibition at the calyx of Held of immature rats. J. Physiol. 553, 415–426.

    Article  PubMed  CAS  Google Scholar 

  • Lee H. T., Thompson C. I., Hernandez A., Lewy J. L., and Belloni F. L. (1993) Cardiac desensitization to adenosine analogues after prolonged R-PIA infusion in vivo. Am. J. Physiol. 265, H1916-H1927.

    PubMed  CAS  Google Scholar 

  • Lee S. P., So C. H., Rashid A. J., Varghese G., Cheng R., Lança A. J., et al. (2004) Dopamine D1 and D2 receptor co-activation generates a novel phospholipase C-mediated calcium signal. J. Biol. Chem. 279, 35671–35678.

    Article  PubMed  CAS  Google Scholar 

  • Lluis C., Cordero O., and Franco R. (1998) Ecto-adenosine deaminase may play a relevant role in the development of the immune system. Immunol. Today 19, 533–534.

    Article  PubMed  CAS  Google Scholar 

  • Lohse M. J., Lenschow V., and Swabe U. (1984) Two affinity states of Ri adenosine receptors in brain membranes. Analysis of guanine nucleotide and temperature effects on radioligand binding. Mol. Pharmacol. 26, 1–9.

    PubMed  CAS  Google Scholar 

  • Londos C., Cooper D. M. F., and Wolff T. (1980) Subclasses of external adenosine receptors. Proc. Natl. Acad. Sci. U. S. A. 77, 2551–2554.

    Article  PubMed  CAS  Google Scholar 

  • Longabaugh J. P., Didsbury J., Spiegel A., and Stiles G. L. (1989) Modification of the rat adipocyte A1 adenosine receptor-adenylate cyclase system during chronic exposure to an A1 adenosine receptor agonist: alterations in the quantity of GS alpha and Gi alpha are not associated with changes in their mRNAs. Mol. Pharmacol. 36, 681–688.

    PubMed  CAS  Google Scholar 

  • Lu D., Yan H., Othman T., Turner C. P., Woolf T., and Rivkees S. A. (2004) Cytoskeletal protein 4.1G binds to the third intracellular loop of the A1 adenosine receptor and inhibits receptor action. Biochem. J. 377, 51–59.

    Article  PubMed  CAS  Google Scholar 

  • Mirabet M., Herrera C. Cordero O. J., Mallol J., Lluis C., and Franco R. (1999) Expression of A2B adenosine receptors in human lymphocytes: their role in T cell activation. J. Cell Sci. 112, 491–502.

    PubMed  CAS  Google Scholar 

  • Mistry R., Golding N., and Challiss R. A. (1998) Regulation of phosphoinositide turnover in neonatal rat cerebral cortex by group I- and II- selective metabotropic glutamate receptor agonists. Br. J. Pharmacol. 123, 581–589.

    Article  PubMed  CAS  Google Scholar 

  • Moore K. A., Nicoll R. A., and Schmitz D. (2003) A denosine gates synaptic plasticity at hippocampal mossy fiber synapses. Proc. Natl. Acad. Sci. U. S. A. 100, 14397–14402.

    Article  PubMed  CAS  Google Scholar 

  • Munshi R., Pang I.-H., Sternweis P.C., and Linden J. (1991) A1 adenosine receptors of bovine brain couple to guanine nucleotide-binding proteins Gi1, Gi2, and Go. J. Biol. Chem. 266, 22285–22289.

    PubMed  CAS  Google Scholar 

  • Nehlig A., Daval J. L., and Debry G. (1992) Caffeine and the central nervous system: mechanisms of action, biochemical, metabolic and psychostimulant effects. Brain Res. Rev. 17, 139–170.

    Article  PubMed  CAS  Google Scholar 

  • Ng G. Y., George S. R., Zastawny R. L., Caron M., Bouvier M., Dennis M., and O’Dowd B. F. (1993) Human serotonin1B receptor expression in Sf9 cells: phosphorylation, palmitoylation, and adenylyl cyclase inhibition. Biochemistry 32, 11727–11733.

    Article  PubMed  CAS  Google Scholar 

  • Ng G. Y., Mouillac B., George S. R., Caron M., Dennis M., Bouvier M., and O’Dowd B. F. (1994a) Desensitization, phosphorylation and palmitoylation of the human dopamine D1 receptor. Eur. J. Pharmacol. 267, 7–19.

    Article  PubMed  CAS  Google Scholar 

  • Ng G. Y., O’Dowd B. F., Caron M., Dennis M., Brann M. R., and George S. R. (1994b) Phosphorylation and palmitoylation of the human D2L dopamine receptor in Sf9 cells. J. Neurochem. 63, 1589–1595.

    Article  PubMed  CAS  Google Scholar 

  • Ng G. Y., O’Dowd B. F., Lee S. P., Chung H. T., Brann S., Seeman P., and George S. R. (1996) Dopamine D2 receptor dimers and receptor-blocking peptides. Biochim. Biophys. Res. Commun. 227, 200–204.

    Article  CAS  Google Scholar 

  • Nyce J. W. and Metzger W. J. (1997) DNA antisense therapy for asthma in an animal model. Nature 385, 721–725.

    Article  PubMed  CAS  Google Scholar 

  • Ogata T., Nakamura Y., Tsuji K., Shibata T., Kataoka K., and Schubert P. (1994) Adenosine enhances intracellular Ca2+ mobilization in conjunction with metabotropic glutamate receptor activation by t-ACPD in cultured hippocampal astrocytes. Neurosci. Lett. 170, 5–8.

    Article  PubMed  CAS  Google Scholar 

  • Palmer T. M. and Stiles G. L. (1995) Adenosine receptors. Neuropharmacology 34, 683–694.

    Article  PubMed  CAS  Google Scholar 

  • Phillis J. W. and Wu P. (1981) The role of adenosine and its nucleotides in central synaptic transmission. Prog. Neurobiol. 16, 187–239.

    Article  PubMed  CAS  Google Scholar 

  • Quarta D., Borycz J., Solinas M., Patkar K., Hockemeyer J., Ciruela F., et al. (2004) Adenosine receptor-mediated modulation of dopamine release in the nucleus accumbens depends on glutamate neurotransmission and N-methyl-D-aspartate receptor stimulation. J. Neurochem. 91, 873–880.

    Article  PubMed  CAS  Google Scholar 

  • Ramkumar V., Olah M. E., Jacobson K. A., and Stiles G. L. (1991) Distinct pathways of desensitization of A1 - and A2-adenosine receptors in DDT1 MF-2 cells. Mol. Pharmacol. 40, 639–647.

    PubMed  CAS  Google Scholar 

  • Ruiz A., Sanz J. M., Gonzalez-Calero G., Fernández M., Andrés A., Cubero A., and Ros M. (1996) Desensitization and internalization of adenosine A1 receptors in rat brain by in vivo treatment with R-P1A: involvement of coated vesicles. Biochim. Biophys. Acta 1310, 168–174.

    Article  PubMed  Google Scholar 

  • Ruiz M. A., Escriche M., Lluis C., Franco R., Martin M., Andres A., and Ros M. (2000) Adenosine A1 receptor in cultured neurons from reat cerebral cortex: colocalization with adenosine deaminase. J. Neurochem. 75, 656–664.

    Article  PubMed  CAS  Google Scholar 

  • Salim H., Ferré S., Dalal A., Peterfreund R. A., Fuxe K., Vincent J. D., and Lledo P. M. (2000) Activation of a denosine A1 and A2A receptors modulates dopamine D2 receptor-induced responses in stably transfected human neuroblastoma cells. J. Neurochem. 74, 432–439.

    Article  PubMed  CAS  Google Scholar 

  • Sarrió S., Casado V., Escriche M., Ciruela F., Mallol J., Canela E. I., Lluis C., and Franco R. (2000) The heat shock cognate protein hsc73 assembles with A(1) adenosine receptors to form functional modules in the cell membrane. Mol. Cell. Biol. 20, 5164–5174.

    Article  PubMed  Google Scholar 

  • Saura C., Ciruela F., Casadó V., Canela E. I., Mallol J., Lluís C., and Franco R. (1996) Adenosine deaminase interacts with A1 adenosine receptors in pig brain cortical membranes. J. Neurochem. 66, 1675–1682.

    Article  PubMed  CAS  Google Scholar 

  • Saura C., Mallol J., Canela E. I., Lluís C., and Franco R. (1998) Adenosine deaminase and A1 adenosine receptors internalize together following agonist-induced receptor desensitization. J. Biol. Chem. 271, 17610–17617.

    Article  Google Scholar 

  • Schoepp D. D., Salhoff C. R., Wright R. A., Johnson B. G., Burnett J. P. Mayne N. G., et al. (1996) The novel metabotropic glutamate receptor agonist 2R,4R-APDC potentiates stimulation of phosphoinositide hydrolysis in the rat hippocampus by 3,5-dihydroxyphenylglycine: evidence for a synergistic interaction between group 1 and group 2 receptors. Neuropharmacology 35, 1661–1672.

    Article  PubMed  CAS  Google Scholar 

  • Spielman W. S. and Arend L. J. (1991) Adenosine receptors and signaling in the kidney. Hypertension 17, 117–130.

    PubMed  CAS  Google Scholar 

  • Toms N. J. and Roberts P. J. (1999) Group 1 mGlu receptors elevate [Ca2+]i in rat cultured cortical type 2 astrocytes: [Ca2+]i synergy with adenosine A1 receptors. Neuropharmacology 38, 1511–1517.

    Article  PubMed  CAS  Google Scholar 

  • Torvinen M., Ginés S., Hillion J., Latini S., Canals M., Ciruela F., et al. (2002) Interactions among adenosine deaminase, adenosine A1 receptors and dopamine D1 receptors in stably cotransfected fibroblast cells and neurons. Neuroscience 13, 709–719.

    Article  Google Scholar 

  • Wu L. G. and Saggau P. (1994) Adenosine inhibits evoked synaptic transmission primarily by reducing presynaptic calcium influx in area CA1 of hippocampus Neuron 12, 1139–1148.

    Article  PubMed  CAS  Google Scholar 

  • Wu L. G. and Saggau P. (1997) Inhibition of elicited neurotransmitter release. Trends Neurosci. 20, 204–212.

    Article  PubMed  CAS  Google Scholar 

  • Yawo H. and Chuhma N. (1993) Preferential inhibition of omega-conotoxin-sensitive presynaptic Ca2+ channels by adenosine autoreceptors. Nature 365, 256–258.

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka K., Sayito O., and Nakata H. (2001) Heteromeric association creates a P2Y-like adenosine receptor Proc. Natl. Acad. Sci. U. S. A. 98, b7617–7622.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Franco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franco, R., Ciruela, F., Casadó, V. et al. Partners for adenosine A1 receptors. J Mol Neurosci 26, 221–232 (2005). https://doi.org/10.1385/JMN:26:2-3:221

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:26:2-3:221

Index Entries

Navigation