Skip to main content
Log in

T cell responses to viral infections

Lessons from lymphocytic choriomeningitis virus

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

The elaboration of a successful immune response is critical for the clearance of viral infections. CD8 T cells can directly kill virus-infected cells and also produce cytokines that modulate virus replication. Thus, the failure to induce or sustain these responses can profoundly impact the outcome of infections. Lymphocytic choriomeningitis virus (LCMV) infection of mice has proven to be one of the most informative experimental systems for examining antiviral T cell responses. In recent years, the application of newly developed approaches to analyze these responses has revealed that acute infections induce remarkably high levels of antiviral T cells. By contrast, protracted or chronic infections are associated with both the functional impairment and deletion of virus-specific CD8 T cells. This article discusses some of our findings using LCMV infection of mice as well as their relevance to other infections of animals and humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Whitton JL, Oldstone MBA: The immune response to viruses; in Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA, Roizman B (eds): Fundamental Virology. Philadelphia, Lippincott Williams & Wilkins, 2001, pp. 285–320.

    Google Scholar 

  2. Ahmed R, Morrison LA, Knipe DM: Viral persistence; in Nathanson N, Ahmed R, Gonzalez-Scarano F, Griffin DE, Holmes KV, Murphy FA, Robinson HL (eds): Viral Pathogenesis. Philadelphia, Lippincott-Raven, 1997, pp. 181–205.

    Google Scholar 

  3. Harty JT, Tvinnereim AR, White DW: CD8+T cell effector mechanisms in resistance to infection. Annu Rev Immunol 2002;18: 275–308.

    Article  Google Scholar 

  4. Guidotti LG, Chisari FV: Noncytolytic control of viral infections by the innate and adaptive immune response. Annu Rev Immunol 2001;19:65–91.

    Article  PubMed  CAS  Google Scholar 

  5. Zajac AJ, Blattman JN Murali-Krishna K, Sourdive DJ, Suresh M, Altman JD, Ahmed R: Viral immune evasion due to persistance of activated T cells without effector function. J Exp Med 1998;188: 2205–2213.

    Article  PubMed  CAS  Google Scholar 

  6. Kalams SA, Walker BD: The critical need for CD4 helpin maintaining effective cytotoxic T lymphocyte responses. J Exp Med 1998;188:2199–2204.

    Article  PubMed  CAS  Google Scholar 

  7. Borrow P, Oldstone MBA: Lymphocytic choriomeningitis virus; in Nathanson N, Ahmed R, Gonzalez-Scarano F, Griffin DE, Holmes KV, Murphy FA, Robinson HL (eds): Viral Pathogenesis. Philadelphia, Lippincott-Raven, 1997, pp. 593–627.

    Google Scholar 

  8. Buchmeier MJ, Zajac AJ: Lymphocytic choriomeningitis virus; in Ahmed R, Chen ISY (eds): Persistent Viral Infections. Chichester, West Sussex, John Wiley & Sons 1999, pp. 575–605.

    Google Scholar 

  9. Welsh RM: Lymphocytic choriomeningitis virus as a model for the study of cellular immunology; in Cunningham MW, Fujinami RS (eds): Effects of Microbes on the Immune System. Philadelphia, Lippincott Williams & Wilkins, 2000, pp.289–312.

    Google Scholar 

  10. Butz EA, Bevan MJ: Massive expansion of antigen-specific CD8+ T cells during an acute virus infection. Immunity 1998;8:167–175.

    Article  PubMed  CAS  Google Scholar 

  11. Murali-Krishna K, Altman JD, Suresh M, Sourdive DJ, Zajac AJ, Miller JD, Slansky, J, Ahmed R; Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 1998;8:177–187.

    Article  PubMed  CAS  Google Scholar 

  12. Bachmann MF: Evaluation of lymphocytic choriomeningitis virus-specific cytotoxic T cell responses; in Lefkovits I (ed): Immunology Methods Manual. San Diego, Academic, 1997, pp. 1919–1933.

    Google Scholar 

  13. Altman JD, Moss PA, Goulder PJ, Barouch DH, McHeyzer-Williams MG, Bell JI, McMichael AJ, Davis MM: Phenotypic analysis of antigen-specific T lymphocytes. Science 1996;274:94–96.

    Article  PubMed  CAS  Google Scholar 

  14. Lin MY, Welsh RM: Stability and diversity of T cell receptor repertoire usage during lymphocytic choriomeningitis virus infection of mice. J Exp Med 1998;188: 1993–2005.

    Article  PubMed  CAS  Google Scholar 

  15. Blattman JN, Sourdive DJ, Murali-Krishna K, Ahmed R, Altman JD: Evolution of the T cell repertoire during primary, memory, and recall responses to viral infection. J Immunol 2000;165:6081–6090.

    PubMed  CAS  Google Scholar 

  16. Homann D, Teyton L, Oldstone MB: Differential regulation of antiviral T-cell immunity results in stable CD8+ but declining CD4+ T-cell memory. Nat Med 2001;7: 913–919.

    Article  PubMed  CAS  Google Scholar 

  17. Hudrisier D, Oldstone MB, Gairin JE: The signal sequence of lymphocytic choriomeningitis virus contains an immunodominant cytotoxic T cell epitope that is restricted by both H-2D(b) and H-2K(b) molecules. Virology 1997; 234:62–73.

    Article  PubMed  CAS  Google Scholar 

  18. Flynn KJ, Belz GT, Altman JD, Ahmed R, Woodland DL, Doherty PC: Virus-specific CD8+ T cells in primary and secondary influenza pneumonia. Immunity 1998;8: 683–691.

    Article  PubMed  CAS  Google Scholar 

  19. Chang J, Braciale TJ: Respiratory syncytial virus infection suppresses lung CD8+ T-cell effector activity and peripheral CD8+ T-cell memory in the respiratory tract. Nat Med 2002;8:54–60.

    Article  PubMed  CAS  Google Scholar 

  20. Stevenson PG, Belz GT, Altman JD, Doherty PC: Virus-specific CD8+ T cell numbers are maintained during gamma-herpesvirus reactivation in CD4-deficient mice. Proc Natl Acad Sci USA 1998;95:15,565–15,570.

    Article  CAS  Google Scholar 

  21. Doherty PC, Christensen JP: Accessing complexity: the dynamics of virus-specific T cell responses. Annu Rev Immunol 2000;18: 561–592.

    Article  PubMed  CAS  Google Scholar 

  22. Callan MF, Tan L, Annels N, Ogg GS, Wilson JD, O'Callaghan CA, Steven N, McMichael AJ, Rickinson AB: Direct visualization of antigen-specific CD8+ T cells during the primary immune response to Epstein-Barr virus In vivo. J Exp Med 1998;187:1395–1402.

    Article  PubMed  CAS  Google Scholar 

  23. Rickinson AB, Moss DJ: Human cytotoxic T lymphocyte responses to Epstein-Barr virus infection. Annu Rev Immunol 1997;15: 405–431.

    Article  PubMed  CAS  Google Scholar 

  24. Rooney CM, Smith CA, Ng CY, Loftin S, Li C, Krance RA, Brenner MK, Heslop HE: Use of gene-modified virus-specific T lymphocytes to control Epstein-Barr-virus-related lymphoproliferation. Lancet 1995;345:9–13.

    Article  PubMed  CAS  Google Scholar 

  25. Papadopoulos EB, Ladanyi M, Emanuel D, et al: Infusions of donor leukocytes to treat Epstein-Barr virus-associated lymphoproliferative disorders after allogeneic bone marrow transplantation. N Engl J Med 1994;330:1185–1191.

    Article  PubMed  CAS  Google Scholar 

  26. Ogg GS, Jin X, Bonhoeffer S, et al: Quantitation of HIV-1-specific cytotoxic T lymphocytes and plasma load of viral RNA. Science 1998;279:2103–2106.

    Article  PubMed  CAS  Google Scholar 

  27. Pantaleo G, Demarest JF, Soudeyns H, Graziosi C, Denis F, Adelsberger JW, Borrow P, Saag MS, Shaw GM, Sekaly RP, Fauci AS: Major expansion of CD8+ T cells with a predominant V beta usage during the primary immune response to HIV. Nature 1994;370:463–467.

    Article  PubMed  CAS  Google Scholar 

  28. Schmitz JE, Kuroda MJ, Santra S, et al: Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science 1999;283:857–860.

    Article  PubMed  CAS  Google Scholar 

  29. Jin X, Bauer DE, Tuttleton SE, Lewin S, Gettie A, Blanchard J, Irwin CE, Safrit JT, Mittler J, Weinberger L, Kostrikis LG, Zhang L, Perelson AS, Ho DD: Dramatic rise in plasma viremia after CD8+ T cell depletion in simian immunodeficiency virus-infected macaques. J Exp Med 1999;189: 991–998.

    Article  PubMed  CAS  Google Scholar 

  30. He XS, Rehermann B, Lopez-Labrador FX, Boisvert J, Cheung R, Mumm J, Wedemeyer H, Berenguer M, Wright TL, Davis MM, Greenberg HB: Quantitative analysis of hepatitis C virus-specific CD8+ T cells in peripheral blood and liver using peptide-MHC tetramers. Proc Natl Acad Sci USA 1999;96:5692–5697.

    Article  PubMed  CAS  Google Scholar 

  31. Lechner F, Wong DK, Dunbar PR, Chapman R, Chung RT, Dohrenwend P, Robbins G, Phillips R, Klenerman P, Walker BD: Analysis of successful immune responses in persons infected with hepatitis C virus. J Exp Med 2000;191: 1499–1512.

    Article  PubMed  CAS  Google Scholar 

  32. Varga SM, Welsh RM: Cutting edge: detection of a high frequency of virus-specific CD4+ T cells during acute infection with lymphocytic choriomeningitis virus. J Immunol 1998;161: 3215–3218.

    PubMed  CAS  Google Scholar 

  33. Whitmire JK, Asano MS, Murali-Krishna K, Suresh M, Ahmed R: Long-term CD4 Th1 and Th2 memory following acute lymphocytic choriomeningitis virus infection. J Virol 1998;72:8281–8288.

    PubMed  CAS  Google Scholar 

  34. Kamperschroer C, Quinn DG: Quantification of epitope-specific MHC class-II-restricted T cells following lymphocytic choriomeningitis virus infection. Cell Immunol 1999;193:134–146.

    Article  PubMed  CAS  Google Scholar 

  35. von Herrath MG, Yokoyama M, Dockter J, Oldstone MB, Whitton JL: CD4-deficient mice have reduced levels of memory cytotoxic T lymphocytes after immunization and show diminished resistance to subsequent virus challenge. J Virol 1996;70:1072–1079.

    Google Scholar 

  36. Oxenius A, Zinkernagel RM, Hengartner H: CD4+ T-cell induction and effector functions: a comparison of immunity against soluble antigens and viral infections. Adv Immunol 1998;70:313–367.

    Article  PubMed  CAS  Google Scholar 

  37. Matloubian M, Kolhekar SR, Somasundaram T, Ahmed R: Molecular determinants of macrophage tropism and viral persistence: importance of single amino acid changes in the polymerase and glycoprotein of lymphocytic choriomeningitis virus. J Virol 1993; 67:7340–7349.

    PubMed  CAS  Google Scholar 

  38. Evans CF, Borrow P, de la Torre JC, Oldstone MB: Virus-induced immunosuppression: kinetic analysis of the selection of a mutation associated with viral persistence. J Virol 1994;68:7367–7373.

    PubMed  CAS  Google Scholar 

  39. Cao W, Henry MD, Borrow P, Yamada H, Elder JH, Ravkov EV, Nichol ST, Compans RW, Campbell KP, Oldstone MB: Identification of alpha-dystroglycan as a receptor for lymphocytic choriomeningitis virus and Lassa fever virus. Science 1998;282: 2079–2081.

    Article  PubMed  CAS  Google Scholar 

  40. Sevilla N, Kunz S, Holz A, Lewicki H, Homann D, Yamada H, Campbell KP, de La Torre JC, Oldstone MB: Immunosuppression and resultant viral persistence by specific viral targeting of dendritic cells. J Exp Med 2000;192: 1249–1260.

    Article  PubMed  CAS  Google Scholar 

  41. Gallimore A, Glithero A, Godkin A, Tissot AC, Pluckthun A, Elliott T, Hengartner H, Zinkernagel R: Induction and exhaustion of lymphocytic choriomeningitis virus-specific cytotoxic T lymphocytes visualized using soluble tetrameric major histocompatibility complex class I-peptide complexes. J Exp Med 1998;187:1383–1393.

    Article  PubMed  CAS  Google Scholar 

  42. Pantaleo G, Soudeyns H, Demarest JF, Vaccarezza M, Graziosi, C, Paolucci S, Daucher M, Cohen OJ, Denis F, Biddison WE, Sekaly RP, Fauci AS: Evidence for rapid disappearance of initially expanded HIV-specific CD8+ T cell clones during primary HIV infection. Proc Natl Acad Sci USA 1997;94: 9848–9853.

    Article  PubMed  CAS  Google Scholar 

  43. Goulder PJ, Altfeld MA, Rosenberg ES, et al: Substantial differences in specificity of HIV-specific cytotoxic T cells in acute and chronic HIV infection. J Exp Med 2001;193:181–194.

    Article  PubMed  CAS  Google Scholar 

  44. Champagne P, Ogg GS, King AS, et al: Skewed maturation of memory HIV-specific CD8 T lymphocytes. Nature 2001;410:106–111.

    Article  PubMed  CAS  Google Scholar 

  45. Appay V, Nixon DF, Donahoe SM, et al: HIV-specific CD8(+) T cells produce antiviral cytokines butare impaired in cytolytic function. J Exp Med 2000;192:63–75.

    Article  PubMed  CAS  Google Scholar 

  46. Gea-Banacloche JC, Migueles SA, Martino L, et al: Maintenance of large numbers of virus-specific CD8+ T cells in HIV-infected progressors and long-term nonprogressors. J Immunol 2000;165: 1082–1092.

    PubMed  CAS  Google Scholar 

  47. Goepfert PA, Bansal A, Edwards BH, Ritter GD Jr, Tellez I, McPherson SA, Sabbaj S, Mulligan MJ: A significant number of human immunodeficiency virus epitope-specific cytotoxic T lymphocytes detected by tetramer binding do not produce gamma interferon. J Virol 2000;74:10,249–10,255.

    Article  CAS  Google Scholar 

  48. Gruener NH, Lechner F, Jung MC, Diepolder H, Gerlach T, Lauer G, Walker B, Sullivan J, Phillips R, Pape GR, Klenerman P: Sustained dysfunction of antiviral CD8+ T lymphocytes after infection with hepatitis C virus. J Virol 2001;75: 5550–5558.

    Article  PubMed  CAS  Google Scholar 

  49. Moser JM, Altman JD, Lukacher AE: Antiviral CD8+ T cell responses in neonatal mice: susceptibility to polyoma virus-induced tumors is associated with lack of cytotoxic function by viral antigen-specific T cells. J Exp Med 2001;193:595–606.

    Article  PubMed  CAS  Google Scholar 

  50. Lee PP, Yee C, Savage PA, Fong L, Brockstedt D, Weber JS, Johnson D, Swetter S, Thompson J, Greenberg PD, Roederer M, Davis MM: Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nat Med 1999;5: 677–685.

    Article  PubMed  CAS  Google Scholar 

  51. Zajac AJ, Murali-Krishna K, Blattman JN, Ahmed R: Therapeutic vaccination against chronic viral infection: the importance of cooperation between CD4+ and CD8+ T cells. Curr Opin Immunol 1998;10:444–449.

    Article  PubMed  CAS  Google Scholar 

  52. Rosenberg ES, Billingsley JM, Caliendo AM, Boswell SL, Sax PE, Kalams SA, Walker BD: Vigorous HIV-1-specific CD4+ T cell responses associated with control of viremia. Science 1997;278: 1447–1450.

    Article  PubMed  CAS  Google Scholar 

  53. Spiegel HM, Ogg GS, DeFalcon E, Sheehy ME, Monard S, Haslett PA, Gillespie G, Donahoe SM, Pollack H, Borkowsky W, McMichael AJ, Nixon DF: Human immunodeficiency virus type 1- and cytomegalovirus-specific cytotoxic T lymphocytes can persist at high frequency for prolonged periods in the absence of circulating peripheral CD4(+) T cells. J Virol 2000;74:1018–1022.

    Article  PubMed  CAS  Google Scholar 

  54. Hazenberg MD, Hamann D, Schuitemaker H, Miedema F: T cell depletion in HIV-1 infection: how CD4+ T cells go out of stock. Nat Immunol 2000;1:285–289.

    Article  PubMed  CAS  Google Scholar 

  55. Rosenberg ES, Altfeld M, Poon SH, Phillips MN, Wilkes BM, Eldridge RL, Robbins GK, D'Aquila RT, Goulder PJ, Walker BD: Immune control of HIV-1 after early treatment of acute infection. Nature 2000;407: 523–526.

    Article  PubMed  CAS  Google Scholar 

  56. Walter EA, Greenberg PD, Gilbert MJ, Finch RJ, Watanabe KS, Thomas ED, Riddell SR: Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med 1995;333: 1038–1044.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan J. Zajac.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khanolkar, A., Fuller, M.J. & Zajac, A.J. T cell responses to viral infections. Immunol Res 26, 309–321 (2002). https://doi.org/10.1385/IR:26:1-3:309

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IR:26:1-3:309

Key Words

Navigation