Skip to main content
Log in

Molecular mechanisms of innate immunity

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

All species require a rapid, systemic reply to pathogens in their environment. This response is known as the innate immune response and is characterized by de novo synthesis of mediators that directly or indirectly through phagocytosis remove and kill the pathogen. Innate immune responses have been preserved throughout evolution and have been studied in detail in organisms from the fruit fly Drosophila melanogaster to humans. In my laboratory, studies performed during the past 25 yr have focused on defining the molecular basis of innate immune responses to microbial pathogens. Specifically, we have used bacterial endotoxin (lipopolysaccharide) as a model stimulus to define how the innate immune system recognizes products of microbial pathogens and initiates responses to remove and/or kill such organisms. Such studies also serve as models to understand more fully the mechanisms underlying a serious human disease known as septic shock. This article discusses septic shock and its relationship to innate immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deitch EA: Animal models of sepsis and shock: a review and lessons learned. Shock 1998;9: 1–11.

    Article  PubMed  CAS  Google Scholar 

  2. Zanetti G, Baumgartner JD, Glauser MP: Sepsis and septic shock. Schweiz Med Wochenschr 1997;127:489–499.

    PubMed  CAS  Google Scholar 

  3. Thomas L: The Lives of a Cell. Notes of a Biology Watcher. New York, Viking, 1974.

    Google Scholar 

  4. Ferrero E, Goyert SM: Nucleotide sequence of the gene encoding the monocyte differentiation antigen, CD14. Nuclei Acids Res 1988; 16:4173.

    Article  CAS  Google Scholar 

  5. Wright SD Ramos RA, Tobias PS, et al.: CD14 serves as the cellular receptor for complexes of lipopolysaccharide with lipopolysacharide binding protein. Science 1990;249:1431–1433.

    Article  PubMed  CAS  Google Scholar 

  6. Ulevitch RJ, Tobias PS: Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu Rev Immunol 1995;13: 437–457.

    Article  PubMed  CAS  Google Scholar 

  7. Schmike J, Mathison J, Morgiewicz J, Ulevitch RJ: Anti-CD14 mAb treatment provides therapeutic benefit after in vivo exposure to endotoxin. Proc Natl Acad Sci USA 1998;95:13,875–13,880.

    Google Scholar 

  8. Pugin J, Kravchenko V, Le J-D, et al.: Cell activation medicated by glycosylphosphatidyli-nositol-anchored or transmembrane forms of CD14. Infect Immun 1908;66:1174–1180.

    Google Scholar 

  9. Lee J-D, Kravchenko V, Kirkland TN, et al.: GPI-anchored or integral membrane forms of CD14 mediate identical cellular responses to endotoxin. Proc Natl Acad Sci USA 1993;90:9930–9934.

    Article  PubMed  CAS  Google Scholar 

  10. Lee JD, Kato K, Tobias PS, et al.: Transfection of CD 14 into 70Z/3 cells dramatically enhances the sensitivity to complexes of lipopolysaccharide (LPS) and LPS binding protein. J Exp Med 1992; 175:1697–1705.

    Article  PubMed  CAS  Google Scholar 

  11. Hultmark D: Immune reactions in Drosophila and other insects: a model for innate immunity. TIG 1993;9:178–183.

    PubMed  CAS  Google Scholar 

  12. Medzhitov R, Janeway CA, Jr: Innate immunity: the virtues of a nonclonal system of recognition. Cell 1997;91:295–298.

    Article  PubMed  CAS  Google Scholar 

  13. Kopp EB, Medzhitov R: The Tollreceptor family and control of innate immunity. Curr Opin Immunol 1999;11:13–18.

    Article  PubMed  CAS  Google Scholar 

  14. Medzhitov R, Preston-Hurlburt P, Janeway CA Jr: A human homologue of the Drosophila Toll protein signals activation of adaptive immunity: Nature 1997;388: 394–397.

    Article  PubMed  CAS  Google Scholar 

  15. Rock FL, Hardiman G, Timans JC, et al.: A family of human receptors structurally related to Drosophila toll. Proc Natl Acad Sci USA 1998;95:588–593.

    Article  PubMed  CAS  Google Scholar 

  16. Chaudhary PM, Ferguson C, Nguyen V, et al.: Cloning and characterization of two Toll/Interleukin-1 receptor-like genes TIL3 and TIL4: evidence for a multigene receptor family in humans. Blood 1998;91:4020–4027.

    PubMed  CAS  Google Scholar 

  17. Kirschning CJ, Wesche H, Ayres TM, Rothe M: Human Toll-like receptor 2 confers responsiveness to bacterial lipopolysaccharide. J Exp Med 1998;188: 2091–2097.

    Article  PubMed  CAS  Google Scholar 

  18. Yang RB, Mark MR, Gray A, et al.: Toll-like receptor-2 mediates lipopolysaccharide-induced cellular signalling. Nature 1998;395: 284–288.

    Article  PubMed  CAS  Google Scholar 

  19. Chow JC, Young DW, Golenbok DT, et al.: Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem 1999;274:10,689–10,692.

    CAS  Google Scholar 

  20. Schwandner R, Dziarski R, Wesche H, et al.: Reptidoglycanand lipoteichoic acid-induced cell activation is mediated by Toll-like receptor 2. J Biol Chem 1999; 274:17,406–17,409.

    Article  CAS  Google Scholar 

  21. Yoshimura, A., Lien E, Ingalls RR, et al.: Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J. Immunol 1999;163:1–5.

    PubMed  CAS  Google Scholar 

  22. Williams MJ, Rodriguez A, Kimbrell DA, Eldon ED: The 18-wheeler mutation revealscomplex antibacterial gene regulation in Drosophila host defense. EMBO J 1997;16:6120–6130.

    Article  PubMed  CAS  Google Scholar 

  23. Lemaitre B, Nicolas E, Michaut L, et al.: The dorsovemtral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 1996;86:973–983.

    Article  PubMed  CAS  Google Scholar 

  24. Heine H, Kirschning CJ, Lien E, et al.: Cutting edge: cells that carry a null allele for Toll-like receptor 2 are capable of responding to endotox in. J. Immunol 1999;162:6971–6975.

    PubMed  CAS  Google Scholar 

  25. Poltorak A, He X, Smirnova I, et al.: Defective LPS signalling in C3H/HeJ and C57BL/10ScCr mice: mutations in TIr4 gene. Science 1998;282:2085–2088.

    Article  PubMed  CAS  Google Scholar 

  26. Qureshi ST, Lariviere L, Leveque G, et al.: Endotoxin-to lerant mice have mutations in Toll-like receptor 4 Tlr4. J Exp Med 1999;189: 615–625.

    Article  PubMed  CAS  Google Scholar 

  27. Vogel SN, Johnson D, Perera PY, et al.: Cutting edge: Functional characterization of the effect of the C3H/HeJ defect in mice that lack an Lpsn gene: in vivo evidence for a dominant regative mutation. J Immunol 1999;12:5666–5670.

    Google Scholar 

  28. Hoshino K, Takeuchi O, Kawai T, et al.: Cuttingedge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysac-charide: evidence for TLR4 as the Lps gene product. J Immunol 1999;12:3749–3752.

    Google Scholar 

  29. Medzhitov R, Preston-Hurlbert P, Kopp E, et al.: MyD88 is an adaptor protein in the hToll/IL1 receptor family signaling pathways. Mol Cell 1998;2:253–258.

    Article  PubMed  CAS  Google Scholar 

  30. Auron PE: The interleukin-1 receptor: ligand interactions and signal transduction. Cytokine Growth Factor Rev 1998;9:221–237.

    Article  PubMed  CAS  Google Scholar 

  31. Zhang FX, Kirschning CJ, Mancinelli R, et al.: Bacterial lipopolysaccharide activates nuclear factor-kappaB through interleukin-1 signaling mediators in cultured human demal endothelial cells and mononuclear phagocytes. J Biol Chem 1999;274:7611–7614.

    Article  PubMed  CAS  Google Scholar 

  32. Wesche H, Gao X, Li X, et al.: IRAK-M is a novel member of the Pelle/Interleukin-1 receptor-associated kinase (IRAK) family. J Biol Chem 1999;274: 19,403–19,410.

    CAS  Google Scholar 

  33. Li X, Commane M, Burns C, et al.: Mutant cells that do not respond to interleukin-1 (IL-1) reveal a novel role for IL-1 receptor-associated kinase. Mol Cell Biol 1999; 19:4643–4652.

    PubMed  CAS  Google Scholar 

  34. Derijard B, Raingeaud J, Barrett T, et al.: Independent human MAP kinase signal transduction path-ways defined by MEK and MKK isoforms. Science 1995;267: 682–685.

    Article  PubMed  CAS  Google Scholar 

  35. Han J, Wang X, Jiang Y, et al.: Identification and characterization of a predominant isoform of human MKK3. FEBS Lett 1996;403: 19–22.

    Article  Google Scholar 

  36. Han J, Lee J-D, Jiang Y, et al.: Characterization of the structure and function of a novel MAP kinase kinase (MKK6). J Biol Chem 1996;271:2886–2891.

    Article  PubMed  CAS  Google Scholar 

  37. Li Z, Jiang Y, Ulevitch RJ, Han J: The primary structure of p38 gamma: a new member of p38 group of MAP kinase. Biochem Biophys Res Commun 1996;228: 334–340.

    Article  PubMed  CAS  Google Scholar 

  38. Han J, Jiang Y, Li Z, et al.: Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation. Nature 1997;386: 296–299.

    Article  PubMed  CAS  Google Scholar 

  39. Han J, Lee J-D, Bibbs L, Ulevitch RJ: A MAP kinase targeted by endotox in and by penosmolarity in mammalian cells. Science 1994; 265:808–811.

    Article  PubMed  CAS  Google Scholar 

  40. Hambleton J, Weirstein SL, Lem L, DeFranco AL: Activation of c-Jun N-termiral kinase in bacterial lipopolysaccharide-stimulated macrophages. Proc Natl Acad Sci USA 1996;93:2774–2778.

    Article  PubMed  CAS  Google Scholar 

  41. Hambleton J, McMahon M. DeFranco AL: Activation of Ref-1 and mitogen-activated protein kinase in murine macrophares partially mimics lipopolys echaride-induced signaling events. J Exp Med 1995;182:147–154.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ulevitch, R.J. Molecular mechanisms of innate immunity. Immunol Res 21, 49–54 (2000). https://doi.org/10.1385/IR:21:2-3:49

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IR:21:2-3:49

Key Words

Navigation