Skip to main content
Log in

Rho GTPase signaling in inflammation and transformation

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Intracellular Rho GTPases provide an important regulatory mechanism to connect cell-surface-generated signals with the nucleus. By cycling between the active (guanosine 5′-triphosphate [GTP]) and inactive (guanosine 5′-diphosphate) state, these GTP-binding proteins control cellular functions ranging from dynamic actin remodeling and activation of transcription factors to cell-cycle progression and cellular transformation. Their contribution to these very diverse processes makes them an essential part of cell movement, growth, and apoptosis. Upstream regulatory mechanisms, as well as a variety of downstream effector molecules, enable Rho GTPases to act in a specific, orchestrated manner, dictating cellular responses. In this article, I review my laboratory's work centering on the goal of determining how specificity in intracellular signaling is achieved and identifying molecular mechanisms of Rho GTPase-mediated processes in innate immune and transformed cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Van Aelst L, D'Souza-Schorey C: Rho GTPases and signaling networks. Genes Dev 1997;11:2295–2322.

    PubMed  Google Scholar 

  2. Mackay DJG, Hall A: Rho GTPases. J Biol Chem 1998;273:20,685–20,688.

    CAS  Google Scholar 

  3. Hall A: Rho GTPases and the actin cytoskeleton. Science 1998;279:509–514.

    Article  PubMed  CAS  Google Scholar 

  4. Del Peso L, Hernandez-Alcoceba R, Embade N: Rho proteins induce metastatic properties in vivo. Oncogene 1997;15(25):3047–3057.

    Article  PubMed  Google Scholar 

  5. Qiu RQ, Chen J, Kirn D, McCormick F, Symons M: An essential role for Rac in Ras transformation. Nature 1995;374:457–459.

    Article  PubMed  CAS  Google Scholar 

  6. Manser E, Leung T, Salihuddin H, Zhao Z-S, Lim L: A brainserine/threonine protein kinase activated by Cdc42 and Rac1. Nature 1994;367:40–46.

    Article  PubMed  CAS  Google Scholar 

  7. Knaus UG, Bokoch GM: The p21RacCdc42-activated kinases (PAKs). Int J Biochem Cell Biol 1998;30:857–862.

    Article  PubMed  CAS  Google Scholar 

  8. Bokoch GM, Wang Y, Bohl B, Sells MA, Quilliam LA, Knaus UG: Interaction of the Nck adapterprotein with p21-activated kinase (PAKI). J Biol Chem 1996;271:25,746–25,749.

    CAS  Google Scholar 

  9. Manser E, Loo TH, Koh CG, et al.: Embaden N: PAK kinases are directly coupled to the PIX family of nucleotide exchange factors. Mol Cell 1998;1:183–192.

    Article  PubMed  CAS  Google Scholar 

  10. Zhang S, Han J, Sells MA, Chernoff J, Knaus UG, Ulevitch RJ, Bokoch GM: Rho Family GTPases regulate p38-mitogen-activated protein kinase through the downstream mediator Pak1. J Biol Chem 1995;270:23,934–23,936.

    CAS  Google Scholar 

  11. Rudel T, Bokoch GM: Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of Pak2. Science 1997;276:1571–1574.

    Article  PubMed  CAS  Google Scholar 

  12. Tjandra H, Compton J, Kellogg D: Control of mitotic events by the Cdc42 GTPase, the C1b2 cyclin and a member of the PAK kinase family. Curr Biol 1998;8(18):991–1000.

    Article  PubMed  CAS  Google Scholar 

  13. Sells MA, Knaus UG, Bagrodia S, Ambrose DM, Bokoch GM, Chernoff J: Human p21-activated kinase (Pak1) regulates actin organization in mammalian cells. Curr Biol 1997;7:202–210.

    Article  PubMed  CAS  Google Scholar 

  14. Finkel T: Oxygen radicals and signaling. Curr Opin Cell Biol 1998;10:248–253.

    Article  PubMed  CAS  Google Scholar 

  15. Babior BM: NADPH oxidase: an update. Blood 1999;5:1464–1476

    Google Scholar 

  16. Knaus UG, Heyworth PG, Evans T, Curnutte JT, Bokoch GM: Regulation of phagocyte oxygen radical production by the GTP-binding protein Rac2. Science 1991;254:1512–1515.

    Article  PubMed  CAS  Google Scholar 

  17. Heyworth P, Knaus UG, Xu X, Uhlinger D, Conroy L, Bokoch GM, Curnutte J: Requirement for post-translational processing of RacGTP-binding proteins for activation of human neutrophil NADPH oxidase. Mol Biol Cell 1993;4:261–269.

    PubMed  CAS  Google Scholar 

  18. Knaus UG, Morris S, Dong H-J, Chernoff J, Bokoch GM: Regulation of human leukocyte p21-activated kinases through G protein-coupled receptors. Science 1995;269:221–223.

    Article  PubMed  CAS  Google Scholar 

  19. Ago T, Nunoi H, Ito T, Sumimoto H: Mechanism for phosphorylation-induced activation of the phagocyte NADPH oxidase protein p47prox J Biol Chem 1999;274:33,644–33,653.

    Article  CAS  Google Scholar 

  20. Bernard V, Bohl BP, Bokoch GM: Characterization of Rac and Cdc42 activation in chemoattractant-stimulated human neutrophils using a novel assay for active GTPases. J Biol Chem 1999;274:13,198–13,204.

    Article  Google Scholar 

  21. Szatrowski TP, Nathan CF: Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 1991;51:794–798.

    PubMed  CAS  Google Scholar 

  22. Suzuki YJ, Forman HJ, Sevanian A: Oxidants as stimulators of signal transduction. Free Radical Biol Med 1997;22:269–285.

    Article  CAS  Google Scholar 

  23. Suh Y-S, Arnold RS, Lassegue B, Shi J, Xu X, Sorescu D, Chung AB, Griendling KK, Lambeth JD: Cell transformation by the superoxide-generating oxidase Mox1. Nature 1999;401:79–82.

    Article  PubMed  CAS  Google Scholar 

  24. Sundaresan M, Yu Z-X, Ferrans VJ, Sulciner DJ, Gutkind JS, Irani K, Goldschmidt-Clermont PJ, Finkel T: Regulation of reactive oxygen species generation in fibroblasts by Rac 1. Biochem J 1996;318:379–382.

    PubMed  CAS  Google Scholar 

  25. Kheradmand F, Werner E, Tremble P, Symons M, Werb Z: Role of Rac1 and oxygen radicals in collagenase-1 expression induced by cell shape changes. Science 1998;280:898–902.

    Article  PubMed  CAS  Google Scholar 

  26. Michiels F, Habets GGM, Stam JC, Van der Kammen RA, Collard JG: A role for Rac in Tiam1-induced membrane ruffling and invasion. Nature 1995;375:338–340.

    Article  PubMed  CAS  Google Scholar 

  27. Roberts AW, Kim C, Zhen JB, et al: Deficiency of the hematopoietic cell-specific Rho family GTPase Rac2 is characterized by abnormalities in neutrophil function and host defense. Immunity 1999;10(2):183–196.

    Article  PubMed  CAS  Google Scholar 

  28. Mira J-P, Benard V, Groffen J, Sanders LC, Knaus UG: Endogenous, hyperactive Rac3 controls proliferation of breast cancer cells by a p21-activated kinase-dependent pathway. Proc Natl Acad Sci USA 2000;97(1):185–189.

    Article  PubMed  CAS  Google Scholar 

  29. Haataja L, Groffen J, Heisterkamp N: Characterization of Rac3, a novel member of the Rho family. J Biol Chem 1997;272:20,384–20,388.

    Article  CAS  Google Scholar 

  30. Zohn IM, Campbell SL, Khosrave-Far R Rossman KL, Der CH: Rho family proteins and Ras transformation: the RHOad less traveled gets congested. Oncogene 1998;17:1415–1438.

    Article  PubMed  CAS  Google Scholar 

  31. King AJ, Sun H, Diaz B, Barnard D, Miao W, Bagrodia S, Marshall MS: The protein kinase Pak3 positively regulates Raf-1 activity through phosphorylation of serine 338. Nature 1998;396:180–183.

    Article  PubMed  CAS  Google Scholar 

  32. Frost JA, Steen H, Shapiro P, Lewis T, Ahn N, Shaw PE, Cobb MH: Cross-cascade activation of ERKs and ternary complex factors by Rho family proteins. EMBO J 1997;16:6426–6438.

    Article  PubMed  CAS  Google Scholar 

  33. Tang Y, Yu J, Field J: Signals from the Ras, Rac, and Rho GTPases

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knaus, U.G. Rho GTPase signaling in inflammation and transformation. Immunol Res 21, 103–109 (2000). https://doi.org/10.1385/IR:21:2-3:103

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IR:21:2-3:103

Key Words

Navigation