Skip to main content
Log in

Pancreatic islet function in ω3 fatty acid-depleted rats

Glucose metabolism and nutrient-stimulated insulin release

  • Original Articles
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

In order to gain information on the determinism of the perturbation of fuel homeostasis in situations characterized by a depletion in long-chain polyunsaturated ω3 fatty acids (ω3), the metabolic and hormonal status of ω3-depleted rats (second generation) was examined. When required, these rats were injected intravenously 120 min before sacrifice with a novel medium-chain triglyceride-fish oil emulsion able to provoke a rapid and sustained increase of the ω3 content in cell phospholipids. The measurement of plasma glucose, insulin, phospholipid, triglyceride, and unesterified fatty acid concentration indicated modest insulin resistance in the ω3-depleted rats. The plasma triglyceride and phospholipid concentrations were decreased in the ω3-depleted rats with abnormally low contribution of ω3 in both circulating and pancreatic islet lipids. The protein, insulin, and lipid content of the islets, as well as their intracellular and extracellular spaces, were little affected in the ω3-depleted rats. The metabolism of d-glucose in the islets of ω3-depleted rats was characterized by a lesser increase in d-[5-3H]glucose utilization and d-[U−14C]glucose oxidation in response to a given rise in hexose concentration and an abnormally low ratio between d-glucose oxidation and utilization. These abnormalities could be linked to an increased metabolism of endogenous fatty acids with resulting alteration of glucokinase kinetics. The release of insulin evoked by d-glucose, at a close-to-physiological concentration (8.3mM), was increased in the ω3-depleted rats, this being considered as consistent with their insulin resistance. Relative to such a release, that evoked by a further rise in d-glucose concentration or by non-glucidic nutrients was abnormally high in ω3-depleted rats, and restored to a normal level after of the intravenous injection of the ω3-rich medium-chain triglyceride-fish oil emulsion. Because the latter procedure failed to correct the perturbation of d-glucose metabolism in the islets of ω3-depleted rats, it is proposed that the anomalies in the secretory behaviour of islets in terms of their response to an increase in hexose concentration or non-nutrient secretagogues is mainly attributable to alteration in K+ and Ca2+ handling, as indeed recently documented in separate experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Simopoulos, A. (2002). Biomed. Pharmacother. 56, 365–379.

    Article  PubMed  CAS  Google Scholar 

  2. Benatti, P., Peluso, G., Nicoloai, R., and Calvani, M. (2004). J. Am. Coll. Nutr. 23, 281–302.

    PubMed  CAS  Google Scholar 

  3. Seo, T., Blaner, W. S., and Deckelbaum, R. J. (2005). Curr. Opin. Lipidol. 16, 11–18.

    Article  PubMed  CAS  Google Scholar 

  4. Delaure, J., LeFoll, C., Corporeau, C., and Lucas, D. (2004). Reprod. Nutr. Dev. 44, 289–299.

    Article  CAS  Google Scholar 

  5. Portois, L., Peltier, S., Chardigny, J.-M., et al. (2005). Eur. J. Physiol. 450, R11 (abstract).

    Google Scholar 

  6. Malaisse, W. J., Sancho, V., Acitores, A., et al. (2005). Program of the 87th annual meeting of the Endocrine Society, San Diego, CA, 2005, p. 592 (Abstract P3-198).

  7. Oguzhan, B., Sancho, V., Acitores, A., et al. (2005). Diabetologia 48(Suppl. 1), A209 (Abstract).

    Google Scholar 

  8. Courtois, P., Zhang, Y., Louchami, K., et al. (2005). Diabetologia 48(Suppl. 1), A430 (Abstract).

    Google Scholar 

  9. Malaisse, W. J., Louchami, K., Zhang, Y., et al. (2005). Diabetes 54(Suppl. 1), A653 (Abstract 2714-PO).

    Google Scholar 

  10. Louchami, K., Zhang, Y., Oguzhan, B., et al. (2005). Diabetologia 48(Suppl. 1), A168 (Abstract).

    Google Scholar 

  11. Zhang, Y., Oguzhan, B., Louchami, K., et al. (2006). Am. J. Physiol., in press.

  12. Portois, L., Deckelbaum, R. J., Malaisse, W. J., and Carpentier, Y. A. (2004). Nutr. Clin. Metab. 18(Suppl. 1), S53 (Abstract).

    Google Scholar 

  13. Yazici, Z., Sener, A., and Malaisse, W. J. (1994). Med. Sci. Res. 22, 377–378.

    CAS  Google Scholar 

  14. Konrad, R. J., Stoller, J. Z., Gao, Z. Y., and Wolf, B. A. (1996). Pancreas 13, 253–258.

    Article  Google Scholar 

  15. Opara, E. C., Hubbard, V. S., Burch, W. M., and Akwari, O. E. (1992). Endocrinology 130, 657–662.

    Article  PubMed  CAS  Google Scholar 

  16. Steerenberg, P. A., Beekhof, P. K., Feskens, E. J., Lips, C. J., Hoppener, J. W., and Beems, R. B. (2002). Diab. Nutr. Metab. 15, 205–214.

    CAS  Google Scholar 

  17. Chicco, A., D'Alessandro, M. E., Karabatas, L., Gutman, R., and Lombardo, Y. B. (1996). Ann. Nutr. Metab. 40, 61–70.

    Article  PubMed  CAS  Google Scholar 

  18. Holness, M. J., Greenwood, G. K., Smith, N. D., and Sugden, M. C. (2003). Endocrinology 144, 3958–3968.

    Article  PubMed  CAS  Google Scholar 

  19. Hollness, M. J., Smith, N. D., Greenwood, G. K., and Sugden, M. C. (2004). Diabetes 53(Suppl. 1), S166-S171.

    Article  Google Scholar 

  20. Carpentier, Y. A., Peltier, S., Portois, L., et al. (2004). Nutr. Clin. Metab. 18(Suppl. 1), S36 (Abstract).

    Google Scholar 

  21. Malaisse, W. J., Hutton, J. C., Kawazu, S., Herchuelz, A., Valverde, I., and Sener, A. (1979). Diabetologia 16, 331–341.

    Article  PubMed  CAS  Google Scholar 

  22. Malaisse, W. J. (1972). In: Endocrine pancreas. Steiner, D. F. and Freinkel, N. (eds.). American Physiological Society: Washington, DC.

    Google Scholar 

  23. Zimmer, L., Delion-Vancassel, S., Durand, G., et al. (2000). J. Lipid Res. 41, 32–40.

    PubMed  CAS  Google Scholar 

  24. Bergmeyer, H. U. and Berndt, E. (1974). In: Methods of enzymatic analysis. Bergmeyer, H. U. (ed.). Academic: New York.

    Google Scholar 

  25. Leclercq-Meyer, V., Marchand, J., Woussen-Colle, M.-C., Giroix, M.-H., and Malaisse, W. J. (1985). Endocrinology 116, 1168–1174.

    Article  PubMed  CAS  Google Scholar 

  26. Richelle, M., Carpentier, Y. A., and Deckelbaum, R. J. (1994). Biochemistry 33, 4872–4878.

    Article  PubMed  CAS  Google Scholar 

  27. Antrum, R. M. and Solomkin, J. S. (1986). Med. Lab. Sci. 43, 44–47.

    PubMed  CAS  Google Scholar 

  28. Malaisse-Lagae, F. and Malaisse, W. J. (1984). In: Methods in diabetes research. Larner, J., and Pohl, S. J. (eds.) Wiley: New York.

    Google Scholar 

  29. Simoens, C., Richelle, M., Rössle, C., Derluyn, M., Deckelbaum, R. J., and Carpentier, Y. A. (1995). Clin. Nutr. 14, 177–185.

    Article  PubMed  CAS  Google Scholar 

  30. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951). J. Biol. Chem. 153, 265–275.

    Google Scholar 

  31. Wieland, O. (1974). In: Methods of enzymatic analysis. Bergmeyer, H. U. (ed.). Academic: New York.

    Google Scholar 

  32. Ramirez, R., Rasschaert, J., Laghmich, A., et al. (2001). Int. J. Mol. Med. 7, 631–638.

    PubMed  CAS  Google Scholar 

  33. Malaisse, W. J. and Sener, A. (1988). Biochim. Biophys. Acta 971, 246–254.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willy J. Malaisse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oguzhan, B., Zhang, Y., Louchami, K. et al. Pancreatic islet function in ω3 fatty acid-depleted rats. Endocr 29, 457–466 (2006). https://doi.org/10.1385/ENDO:29:3:457

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ENDO:29:3:457

Key Words

Navigation