Skip to main content
Log in

Carvedilol inhibits the mitochondrial permeability transition by an antioxidant mechanism

  • Original Contributions
  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

It was previously shown that carvedilol, a β-adrenergic receptor antagonist with antioxidant properties, was able to inhibit the mitochondrial permeability transition (MPT). In the present work, the hypothesis was that the negative impact of carvedilol on the MPT was specifically the result of its antioxidant effect. For the current investigation, we used three different MPT inducers. MPT-associated events were tested to study the protective effect of both carvedilol and cyclosporin-A, the known MPT inhibitor. Carvedilol inhibited mitochondrial swelling with calcium plus phosphate and with calcium plus t-butylhydroperoxide, but not with calcium plus carboxyatractyloside. Carvedilol inhibited the oxidation of thiol groups with calcium plus phosphate (p<0.01) and with calcium plus t-butylhydroperoxide (p<0.05), but not with calcium plus carboxyatractyloside—in opposition to the full protection afforded by cyclosporin-A when using calcium and carboxyatractyloside. Our results showed that carvedilol was effective only when the MPT was triggered by a primary oxidative process. This finding implies that the antioxidant properties of carvedilol are crucial for the observed effects and reinforces the advantageous use of carvedilol in cardiac pathologies associated with enhanced cellular oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zoratti, M. and Szabò, I. (1995). The mitochondrial permeability transition. Biochim. Biophys. Acta 1241:139–176.

    PubMed  Google Scholar 

  2. Baker, J.E., Felix, C.C., Olinger, G.N., and Kalyanaraman, B. (1988). Myocardial ischemia and reperfusion: direct evidence for free radical generation by electron spin resonance spectroscopy. Proc. Natl. Acad. Sci. USA 85:2786–2789.

    Article  PubMed  CAS  Google Scholar 

  3. Kristián, T. and Siesjo, B.K. (1996). Calcium-related damage in ischemia. Life Sci. 59:357–367.

    Article  PubMed  Google Scholar 

  4. Kowaltowski, A.J., Castilho, R.F., Grijalba, M.T., Bechara, E.J.H., and Vercesi, A.E. (1996). Effect of inorganic phosphate concentration on the nature of inner mitochondrial membrane alterations mediated by Ca2+ ions. J. Biol. Chem. 271:2929–2934.

    Article  PubMed  CAS  Google Scholar 

  5. Kowaltowski, A.J., Castilho, R.F., and Vercesi, A.E. (1996). Opening of the mitochondrial permeability transition pore by uncoupling or inorganic phosphate in the presence of Ca2+ is dependent on mitochondrial-generated reactive oxygen species. FEBS Lett. 378:150–152.

    Article  PubMed  CAS  Google Scholar 

  6. Kowaltowski, A.J. and Vercesi, A.E. (1999). Mitochondrial damaged induced by conditions of oxidative stress. Free Rad. Biol. Med. 26:463–471.

    Article  PubMed  CAS  Google Scholar 

  7. Crompton, M. and Costi, A. (1990). A heart mitochondrial Ca2+-dependent pore of possible relevance to reperfusioninduced injury. Biochem. J. 266:33–39.

    PubMed  CAS  Google Scholar 

  8. Di Lisa, F., Menabò, R., Canton, M., Barile, M., and Bernardi, P. (2001). Opening of the mitochondrial permeability transition pore causes depletion of mitochondrial and cytosolic NAD+ and is a causative event in the death of myocytes in postischemic reperfusion of the heart. J. Biol. Chem. 276:2571–2575.

    Article  PubMed  Google Scholar 

  9. Ichas, F., Jouaville, L.S., Sidash, S.S., Mazat, J.-P., and Holmuhamedov, E.L. (1994). Mitochondrial calcium spiking: a transduction mechanism based on calcium-induced permeability transition involved in cell calcium signalling. FEBS Lett. 348:211–215.

    Article  PubMed  CAS  Google Scholar 

  10. Ichas, F., Jouaville, L.S., and Mazat, J.-P. (1997). Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals. Cell 89:1145–1153.

    Article  PubMed  CAS  Google Scholar 

  11. Ichas, F. and Mazat, J.-P. (1998). From calcium signaling to cell death: two conformations for the mitochondrial permeability transition pore. Switching from low- to high-conductance state. Biochim. Biophys. Acta 1366:33–50.

    Article  PubMed  CAS  Google Scholar 

  12. Dunn, C.J., Lea, A.P., and Wagstaff, A.J. (1997) Carvedilol—a reappraisal of its pharmacological properties and therapeutic use in cardiovascular disorders. Drugs 54:161–185.

    PubMed  CAS  Google Scholar 

  13. Yue, T.-L., Cheng, H.-Y., Lysko, P.G., McKenna, P.J., Feueustein, R., Gu, J.-L., et al. (1992). Carvedilol, a new vasodilator and beta adrenoceptor antagonist is an antioxidant and free radical scavenger. J. Pharmacol. Exp. Ther. 263:92–98.

    PubMed  CAS  Google Scholar 

  14. Yue, T.-L., McKenna, P.J., Ruffolo, R.R. Jr., and Feuerstein, G. (1992). Carvedilol, a new β-adrenoceptor antagonist and vasodilator antihy pertensive drug, inhibits superoxide release from human neutrophils. Eur. J. Pharm. 214:277–280.

    Article  CAS  Google Scholar 

  15. Feuerstein, G., Yue, T.-L., Ma, X., and Ruffolo, R.R. (1998). Novel mechanisms in the treatment of heart failure: inhibition of oxygen radicals and apoptosis by carvedilol. Prog. Cardiovasc. Dis. 41:17–24.

    Article  PubMed  CAS  Google Scholar 

  16. Moreno, A.J.M., Santos, D.J.S.L., and Palmeira, C.M. (1998). Ischemic heart disease: the role of mitochondria— Carvedilol prevents lipid peroxidation of mitochondrial membranes. Rev. Port. Cardiol. 17(Suppl. II):II-63–II-77.

    Google Scholar 

  17. Oliveira, P.J., Santos, D.L., and Moreno, A.J.M. (2000). Carvedilol inhibits the exogenous NADH dehydrogenase in rat heart mitochondria. Arch. Biochem. Biophys. 374:279–285.

    Article  PubMed  CAS  Google Scholar 

  18. Oliveira, P.J., Marques, M.P.M., Carvalho, L.A.E.B., and Moreno, A.J.M. (2000). Effects of carvedilot on isolated heart mitochondria: evidence for a protonophoretic mechanism. Biochem. Biophys. Res. Commun. 276:82–87.

    Article  PubMed  CAS  Google Scholar 

  19. Oliveira, P.J., Rolo, A.P., Palmeira, C.M., and Moreno, A.J.M. (2001). Carvedilol reduces mitochondrial damage induced by hypoxanthine/xanthine oxidase-relevance for hypoxia/reperfusion injury. Cardiovasc. Toxicol. 1:205–213.

    Article  PubMed  CAS  Google Scholar 

  20. Oliveira, P.J., Coxito, P.M., Rolo, A.P., Santos, D.L., Palmeira, C.M., and Moreno, A.J.M. (2001). Inhibitory effect of carvedilol in the high-conductance state of the mitochondrial permeability transition pore. Eur. J. Pharmacol. 412:231–237.

    Article  PubMed  CAS  Google Scholar 

  21. Rajdev, S. and Reynolds, I.J. (1993). Calcium Green-5N, a novel fluorescent probe for monitoring high intracellular free Ca2+ concentrations associated with glutamate excitotoxicity in cultured rat brain neurons. Neurosci. Lett. 162:149–152.

    Article  PubMed  CAS  Google Scholar 

  22. Riddles, P.W., Blakeley, R.L., and Zerner, B. (1983). Reassessment of Ellman’s reagent. Methods Enzymol. 91: 49–60.

    Article  PubMed  CAS  Google Scholar 

  23. Fontaine, E., Ichas, F., and Bernardi, P. (1998). A Ubiquinone-binding site regulates the mitochondrial permeability transition pore. J. Biol. Chem. 273:25734–27540.

    Article  PubMed  CAS  Google Scholar 

  24. Andreyev, A.Y., Fahy, B., and Fiskum, G. (1998). Cytochrome c release from brain mitochondrial is independent of the mitochondrial permeability transition. FEBS Lett. 439:373–376.

    Article  PubMed  CAS  Google Scholar 

  25. Richter, C. (1984). Hydroperoxide effects on redox state of pyridine nucleotides and Ca2+ retention by mitochondria. Methods Enzymol. 105:435–441.

    PubMed  CAS  Google Scholar 

  26. Silva, J.P., Winterhalter, K.H., and Richter, C. (1997). t-Butylhydroperoxide and gliotoxin stimulate Ca2+ release from rat skeletal muscle mitochondria. Redox Rep. 3:331–341.

    PubMed  CAS  Google Scholar 

  27. Chernyak, B.V. and Bernardi, P. (1996). The mitochondrial permeability transition pore is modulated by oxidative agents through both pyrifine nucleotides and glutathione at two separate sites. Eur. J. Biochem. 238:623–630.

    Article  PubMed  CAS  Google Scholar 

  28. Crompton, M. (1999). The mitochondrial permeability transition pore and its role in cell death. Biochem. J. 341:233–249.

    Article  PubMed  CAS  Google Scholar 

  29. Broekemeier, K.M., Dempsey, M.E., and Pfeiffer, D.R. (1989). Cyclosporin A is a potent inhibitor of the inner membrane mitochondrial transition in liver mitochondria. J. Biol. Chem. 264:7826–7830.

    PubMed  CAS  Google Scholar 

  30. Freisleben, H.J., Fuchs, J., Mainka, L., and Zimmer, G. (1988). Reactivity of mithondrial sulfhydryl groups toward dithionitrobenzoic acid and bromobimanes under oligomycin-inhibited and uncoupling conditions. Arch. Biochem. Biophys. 266:89–97.

    Article  PubMed  CAS  Google Scholar 

  31. Zago, E.B., Castilho, R.F., and Vercesi, A.E. (2000). The redox state of endogenous pyridine nucleotides can determine both the degree of mitochondrial oxidative stress and the solute selectivity of the permeability transition pore. FEBS Lett. 478:29–33.

    Article  PubMed  CAS  Google Scholar 

  32. Scorrano, L., Petronilli, V., and Bernardi, P. (1997). On the voltage dependence of the mitochondrial permeability transition pore. J. Biol. Chem. 272:12295–12299.

    Article  PubMed  CAS  Google Scholar 

  33. Pruett, J.K., Walle, T., and Walle, U. (1980). Propranolol effects on membrane replorization time in isolated canine purkinje fibers: threshold tissue content and the influence of exposure time. J. Pharmacol. Exp. Therap. 215:539–543.

    CAS  Google Scholar 

  34. Neugebauer, G., Akpan, W., Mollendorff, E.V., Neupert, P., and Reif, K. (1987). Pharmacokinetics and disposition of carvedilol in humans. J. Cardiovasc. Therap. 10:S85-S88.

    CAS  Google Scholar 

  35. Zoroddu, M.A., Grepioni, F., and Franconi, F. (2003). Carvedilol, a β adrenoceptor blocker with chelating proerties. A copper ‘superdimer’ based on dimetal units. J. Inorg. Biochem. 95:315–320.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo J. Oliveira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliveira, P.J., Esteves, T., Rolo, A.P. et al. Carvedilol inhibits the mitochondrial permeability transition by an antioxidant mechanism. Cardiovasc Toxicol 4, 11–20 (2004). https://doi.org/10.1385/CT:4:1:11

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/CT:4:1:11

Key words

Navigation