Skip to main content
Log in

Carvedilol reduces mitochondrial damage induced by hypoxanthine/xanthine oxidase

Relevance to hypoxia/reoxygenation injury

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

The cardioprotective properties of new pharmaceuticals such as carvedilol might be explained by enhanced mitochondrial protection. The aim of this work was to determine the role of carvedilol in the protection of heart mitochondria from oxidative damage induced by hypoxanthine/xanthine oxidase, a known source of oxidative stress in the vascular system. Carvedilol reduced oxidative-stress-induced mitochondrial injury, as seen by the delay in the loss of the mitochondrial transmembranar potential (ΔΨ), the decrease in mitochondrial swelling, and the increase in mitochondrial calcium uptake. Carvedilol improved the mitochondrial respiratory activity in state III and offered an overall protection in the respiratory control and in the P/O ratios in mitochondria under oxidative stress. The data indicated that carvedilol was able to partly protect heart mitochondria from oxidative stress-induced damage. Our results suggest that mitochondria can be important targets for some cardioprotective pharmaceuticals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferrari, R. (1996). The role of mitochondria in ischemic heart disease. J. Cardiovasc. Pharmacol. 28(Suppl. 1): S1-S10.

    PubMed  CAS  Google Scholar 

  2. Di Lisa, F., Menabò, R., Canton, M., and Petronilli, V. (1998). The role of mitochondria in the salvage and injury of the ischemic myocardium. Biochim. Biophys. Acta 1366: 69–78.

    Article  PubMed  Google Scholar 

  3. Baker, J.E., Felix, C.C., Olinger, G.N., and Kalyanaraman, B. (1988). Myocardial ischemia and reperfusion: direct evidence for free radical generation by electron spin resonance spectroscopy. Proc. Natl. Acad. Sci. USA 85:2786–2789.

    Article  PubMed  CAS  Google Scholar 

  4. Ward, A., McBurney, A., and Lunec, J. (1994). Evidence for the involvement of oxygen-derived free radicals in ischemia-reperfusion injury. Free Radic. Res. Commun. 20:21–28.

    CAS  Google Scholar 

  5. Ferrari, R., Agnoletti, L., Comini, L., Gaia, G., Bachetti, T., Cargnoni, A., et al. (1998). Oxidative stress during myocardial ischemia and heart failure. Eur. Heart J. 19: B2-B11.

    PubMed  CAS  Google Scholar 

  6. Giron-Calle, J., Zwizinski, C.W., and Schmid, H.H.O. (1994). Peroxidative damage to cardiac mitochondria—II. Immunological analysis of modified adenine nucleotide translocase. Arch. Biochem. Biophys. 315:1–7.

    Article  PubMed  CAS  Google Scholar 

  7. Crompton, M. and Costi, A. (1990). A heart mitochondrial Ca2+-dependent pore of possible relevance to reperfusion-induced injury. Biochem. J. 266:33–39.

    PubMed  CAS  Google Scholar 

  8. Halestrap, A.P., Kerr, P.M., Javadov, S., and Woodfield, K-Y. (1998). Elucidating the molecular mechanism of the permeability transition pore and its role in reperfusion injury of the heart. Biochim. Biophys. Acta 1366:79–94.

    Article  PubMed  CAS  Google Scholar 

  9. Jurado, F., Bellon, J.M., Pareja, J.A., Golitsin, A., Millán, L., Pascual, G., et al. (1998). Effects of ischemia-reperfusion and cyclosporin-A on cardiac muscle ultrastructure. Histol. Histopathol. 13:761–774.

    PubMed  CAS  Google Scholar 

  10. Hendrickson, S.C., St. Louis, J.D., Lowe, J.E., and Abdel-Aleem, S. (1997). Free fatty acid metabolism during myocardial ischemia and reperfusion. Mol. Cell Biochem. 166:85–94.

    Article  PubMed  CAS  Google Scholar 

  11. Maulik, N., Yoshida, T., and Das, D.K. (1999). Regulation of cardiomyocyte apoptosis in ischemic reperfused mouse heart by glutathione peroxidase. Mol. Cell. Biochem. 196:13–21.

    Article  PubMed  CAS  Google Scholar 

  12. Ruffolo, R.R., Jr., Boyle, D.A., Brooks, D.P., Feuerstein, G.Z., Venuti, R.P., Lukas, M.A., et al. (1992). Carvedilol, anovel cardiovascular drug with multiple actions. Cardiovasc. Drug Rev. 10:127–157.

    Article  CAS  Google Scholar 

  13. Dunn, C.J., Lea, A.P., and Wagstaff, A.J. (1997). Carvedilol—a reappraisal of its pharmacological properties and therapeutic use in cardiovascular disorders. Drugs 54: 161–185.

    PubMed  CAS  Google Scholar 

  14. Yue, T-L., Cheng, H-Y., Lysko, P.G., McKenna, P.J., Feueustein, R., Gu, J-L., et al. (1992). Carvedilol, a new vasodilator and beta adrenoceptor antagonist, is an antioxidant and free radical scavenger. J. Pharmacol. Exp. Ther. 263:92–98.

    PubMed  CAS  Google Scholar 

  15. Yue, T-L., McKenna, P.J., Ruffolo, R.R. Jr., and Feuerstein, G. (1992). Carvedilol, a new b-adrenoceptor antagonist and vasodilator antihypertensive drug, inhibits superoxide release from human neutrophils. Eur. J. Pharmacol. 214:277–280.

    Article  PubMed  CAS  Google Scholar 

  16. Moreno, A.J.M., Santos, D.L., and Palmeira, C.M. (1998). Ischemic heart disease: the role of mitochondria—carvedilol prevents lipid peroxidation of mitochondrial membranes. Rev. Port. Cardiol. 17:II-63–II-77.

    Google Scholar 

  17. Oliveira, P.J., Santos, D.L., and Moreno, A.J.M. (2000). Carvedilol inhibits the exogenous NADH dehydrogenase in rat heart mitochondria. Arch. Biochem. Biophys. 374: 279–285.

    Article  PubMed  CAS  Google Scholar 

  18. Nohl, H., Koltover, V., and Stolze, K. (1993). Ischemia/ reperfusion impairs mitochondrial energy conservation and triggers O *−2 release as a byproduct of respiration. Free Radical Res. Commun. 18:127–137.

    Article  CAS  Google Scholar 

  19. Takeyama, N., Matsuo, N., and Tanaka, T. (1993). Oxidative damage to mitochondria is mediated by the Ca2+-dependent inner-membrane permeability transition. Biochem. J. 294:719–725.

    PubMed  CAS  Google Scholar 

  20. Broekemeier, K.M., Dempsey, M.E., and Pfeiffer, D.R. (1989). Cyclosporin A is a potent inhibitor of the inner membrane mitochondrial transition in liver mitochondria. J. Biol. Chem. 264:7826–7930.

    PubMed  CAS  Google Scholar 

  21. Kamo, N., Muratsugu, M., Hogoh, R., and Kobatake, Y. (1979). Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J. Membr. Biol. 49:105–121.

    Article  PubMed  CAS  Google Scholar 

  22. Rajdev, S. and Reynolds, I.J. (1993). Calcium Green-5N, a novel fluorescent probe for monitoring high intracellular free Ca2+ concentrations associated with glutamate excitotoxicity in cultured rat brain neurons. Neurosci. Lett. 162: 149–152.

    Article  PubMed  CAS  Google Scholar 

  23. Halliwell, B. (1975). The superoxide dismutase activity of iron complexes. FEBS Lett. 56:34–38.

    Article  PubMed  CAS  Google Scholar 

  24. Oliveira, P.J., Marques, M.P.M., Carvalho, L.A.E.B., and Moreno, A.J.M. (2000). Effects of carvedilol on isolated heart mitochondria: evidences for a protonophoretic mechanism. Biochem. Biophys. Res. Commun. 276:82–87.

    Article  PubMed  CAS  Google Scholar 

  25. Eddy, L.J., Stewart, J.R., Jones, H.P., Engerson, T.D., McCord, J.M., and Downey, J.M. (1987). Free radical-producing enzyme, xanthine oxidase, is undetectable in human hearts. Am. J. Physiol. 253:H709-H711.

    PubMed  CAS  Google Scholar 

  26. Saksela, M., Lapatto, R., and Raivio, K. (1999). Irreversible conversion of xanthine dehydrogenase into xanthine oxidase by a mitochondrial protease. FEBS Lett. 443:117–120.

    Article  PubMed  CAS  Google Scholar 

  27. Oliveira, P.J., Coxito, P.M., Rolo, A.P., Santos, D.L., Palmeira, C.M., and Moreno, A.J.M. (2000). Inhibitory effect of carvedilol in the high-conductance state of the calcium-sensitive mitochondrial permeability transition pore. Eur. J. Pharmacol. 412 (3):231–237.

    Article  Google Scholar 

  28. Zago, E.B., Castilho, R.F., and Vercesi, A.E. (2000). The redox state of endogenous pyridine nucleotides can determine both the degree of mitochondrial oxidative stress and the solute selectivity of the permeability transition pore. FEBS Lett. 478:29–33.

    Article  PubMed  CAS  Google Scholar 

  29. Halestrap, A.P. and Davidson, A.M. (1990). Inhibition of Ca2+-induced large-amplitude swelling of liver and heart mitochondria by cyclosporin is probably caused by the inhibitor binding to mitochondrial-matrix peptidylprolyl cis-trans isomerase and preventing it interacting with the adenine nucleotide translocase. Biochem. J. 268: 153–160.

    PubMed  CAS  Google Scholar 

  30. Pruett, J.K., Walle, T., and Walle, U. (1980). Propranolol effects on membrane repolarization time in isolated canine Purkinje fibers: threshold tissue content and the influence of exposure time. J. Pharmacol. Exp. Ther. 215:539–543.

    PubMed  CAS  Google Scholar 

  31. Neugebauer, G., Akpan, W., Mollendorff, E.V., Neupert, P., and Reif, K. (1987). Pharmacokinetics and disposition of carvedilol in humans. J. Cardiovasc. Ther. 10(Suppl. 11): S85-S88.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to António J. M. Moreno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliveira, P.J., Rolo, A.P., Palmeira, C.M. et al. Carvedilol reduces mitochondrial damage induced by hypoxanthine/xanthine oxidase. Cardiovasc Toxicol 1, 205–213 (2001). https://doi.org/10.1385/CT:1:3:205

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CT:1:3:205

Key Words

Navigation