Skip to main content
Log in

Protein translocation across the peroxisomal membrane

  • Review Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Peroxisomal matrix proteins are synthesized on free cytosolic ribosomes and posttranslationally imported into the organelle. Translocation of these newly synthesized proteins across the peroxisomal membrane requires the concerted action of many different proteins, the majority of which were already identified. However, not much is known regarding the mechanism, of protein translocation across this membrane system. Here, we discuss recent mechanistic and structural data. These results point to a model in which proteins en route to the peroxisomal matrix are translocated across the organelle membrane by their own receptor in a process that occurs, through a large membrane protein assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Purdue, P. E., and Lazarow, P. B. (2001) Peroxisome biogenesis. Annu. Rev. Cell Dev. Biol. 17, 701–752.

    PubMed  CAS  Google Scholar 

  2. Subramani, S. (1993) Protein import into peroxisomes and biogenesis of the organelle. Annu. Rev. Cell Biol. 9, 445–478.

    PubMed  CAS  Google Scholar 

  3. Sacksteder, K. A. and Gould, S. J. (2000) The genetics of peroxisome biogenesis. Annu. Rev. Genet. 34, 623–652.

    PubMed  CAS  Google Scholar 

  4. Sparkes, I. A., and Baker, A. (2002) Peroxisome biogenesis and protein import in plants animals and yeasts: enigma and variations. Mol. Membr. Biol. 19, 171–185.

    PubMed  CAS  Google Scholar 

  5. Eckert, J. H., and Erdmann, R. (2003) Peroxisome biogenesis. Rev. Physiol. Biochem. Pharmacol. 147, 75–121.

    PubMed  CAS  Google Scholar 

  6. Gould, S. J., and Valle, D. (2000) Peroxisome biogenesis disorders: genetics and cell biology. Trends Genet. 16, 340–345.

    PubMed  CAS  Google Scholar 

  7. Gould, S. J., Reymond, G. V., and Valle, D. (2001) The peroxisome biogenesis disorders, in The Metabolic and Molecular Bases of Inherited Disease (Scriver CR, Beadet AL, Sly WS and Valle, D., eds.) McGraw-Hill, New York, pp. 3181–3217.

    Google Scholar 

  8. Raymond, G. V. (2001) Peroxisomal disorders. Curr. Opin. Neurol. 14, 783–787.

    PubMed  CAS  Google Scholar 

  9. Weller, S., Gould, S. J., and Valle, D. (2003) Peroxisome biogenesis disorders. Annu. Rev. Genomics Hum. Genet. 4, 165–211.

    PubMed  CAS  Google Scholar 

  10. Honsho, M., Tamura, S., Shimozawa, N., Suzuki, Y., Kondo, N., and Fujiki, Y. (1998) Mutation in PEX16 is causal in the peroxisome-deficient Zellweger syndrome of complementation group D. Am. J. Hum. Genet. 63, 1622–1630.

    PubMed  CAS  Google Scholar 

  11. Shimozawa, N., Suzuki, Y., Zhang, Z., Imamura, A., Kondo, N., Kinoshita, N., et al. (1998) Genetic basis of peroxisome-assembly mutants of humans, Chinese hamster ovary cells, and yeast: identification of a new complementation group of peroxisome-biogenesis disorders apparently lacking peroxisomal-membrane ghosts. Am. J. Hum. Genet. 63, 1898–1903.

    PubMed  CAS  Google Scholar 

  12. Matsuzono, Y., Kinoshita, N., Tamura, S., Shimozawa, N., Hamasaki, M., Ghaedi, K., et al. (1999) Human PEX19: cDNA cloning by functional complementation, mutation analysis in a patient with Zellweger syndrome, and potential role in peroxisomal membrane assembly. Proc. Natl. Acad. Sci. U S A 96, 2116–2121.

    PubMed  CAS  Google Scholar 

  13. South, S. T., and Gould, S. J. (1999) Peroxisome synthesis in the absence of preexisting peroxisomes. J. Cell Biol. 144, 255–266.

    PubMed  CAS  Google Scholar 

  14. Ghaedi, K., Honsho, M., Shimozawa, N., Suzuki, Y., Kondo, N., and Fujiki, Y. (2000) PEX3 is the causal gene responsible for peroxisome membrane assembly-defective Zellweger syndrome of complementation group G. Am. J. Hum. Genet. 67, 976–981.

    PubMed  CAS  Google Scholar 

  15. Sacksteder, K. A., Jones, J. M., South, S. T., Li, X., Liu, Y., and Gould, S. J. (2000) PEX19 binds multiple peroxisomal membrane proteins, is predominantly cytoplasmic, and is required for peroxisome membrane synthesis. J. Cell Biol. 148, 931–944.

    PubMed  CAS  Google Scholar 

  16. Tam, Y. Y., Torres-Guzman, J. C., Vizeacoumar, F. J., Smith, J. J., Marelli, M., Aitchison, J. D., et al. (2003) Pex11-related proteins in peroxisome dynamics: a role for the novel peroxin Pex27p in controlling peroxisome size and number in Saccharomyces cerevisiae. Mol. Biol. Cell 14, 4089–4102.

    PubMed  CAS  Google Scholar 

  17. Vizeacoumar, F. J., Torres-Guzman, J. C., Tam, Y. Y., Aitchison, J. D., and Rachubinski, R. A. (2003) YHR150w and YDR479c encode peroxisomal integral membrane proteins involved in the regulation of peroxisome number, size, and distribution in Saccharomyces cerevisiae. J. Cell Biol. 161, 321–332.

    PubMed  CAS  Google Scholar 

  18. Distel, B., Erdmann, R., Gould, S. J., Blobel, G., Crane, D. I., Cregg, J. M., et al. (1996) A unified nomenclature for peroxisome biogenesis factors. J. Cell Biol. 135, 1–3.

    PubMed  CAS  Google Scholar 

  19. Lazarow, P. B. (2003) Peroxisome biogenesis: advances and conundrums. Curr. Opin. Cell Biol. 15, 489–497.

    PubMed  CAS  Google Scholar 

  20. Lazarow, P. B. and Fujiki, Y. (1985) Biogenesis of peroxisomes. Annu. Rev. Cell Biol. 1, 489–530.

    PubMed  CAS  Google Scholar 

  21. Gould, S. J., Keller, G. A., Hosken, N., Wilkinson, J., and Subramani, S. (1989) A conserved tripeptide sorts proteins to peroxisomes. J. Cell Biol. 108, 1657–1664.

    PubMed  CAS  Google Scholar 

  22. Miura, S., Kasuya-Arai, I., Mori, H., Miyazawa, S., Osumi, T., Hashimoto, T., et al. (1992) Carboxyl-terminal consensus Ser-Lys-Leu-related tripeptide of peroxisomal proteins functions in vitro as a minimal peroxisome-tar-geting signal. J. Biol. Chem. 267, 14405–14411.

    PubMed  CAS  Google Scholar 

  23. Elgersma, Y. and Tabak, H. F. (1996) Proteins involved in peroxisome biogenesis and functioning. Biochim. Biophys. Acta 1286, 269–283.

    PubMed  CAS  Google Scholar 

  24. Lametschwandtner, G., Brocard, C., Fransen, M., Van Veldhoven, P., Berger, J., and Hartig, A. (1998) The difference in recognition of terminal tripeptides as peroxisomal targeting signal 1 between yeast and human is due to different affinities of their receptor Pex5p to the cognate signal and to residues adjacent to it. J. Biol. Chem. 273, 33635–33643.

    PubMed  CAS  Google Scholar 

  25. Subramani, S., Koller, A., and Snyder, W. B. (2000) Import of peroxisomal matrix and membrane proteins. Annu. Rev. Biochem. 69, 399–418.

    PubMed  CAS  Google Scholar 

  26. Swinkels, B. W., Gould, S. J., Bodnar, A. G., Rachubinski, R. A., and Subramani, S. (1991) A novel, cleavable peroxisomal targeting signal at the amino-terminus of the rat 3-ketoacyl-CoA thiolase. EMBO J. 10, 3255–3262.

    PubMed  CAS  Google Scholar 

  27. Osumi, T., Tsukamoto, T., Hata, S., Yokota, S., Miura, S., Fujiki, Y., et al. (1991) Amino-terminal presequence of the precursor of peroxisomal 3-ketoacyl-CoA thiolase is a cleavable signal peptide for peroxisomal targeting. Biochem. Biophys. Res. Commun. 181, 947–954.

    PubMed  CAS  Google Scholar 

  28. Rehling, P., Marzioch, M., Niesen, F., Wittke, E., Veenhuis, M., and Kunau, W. H. (1996) The import receptor for the peroxisomal targeting signal 2 (PTS2) in Saccharomyces cerevisiae is encoded by the PAS7 gene. EMBO J. 15, 2901–2913.

    PubMed  CAS  Google Scholar 

  29. Miura, S., Mori, M., Takiguchi, M., Tatibana, M., Furuta, S., Miyazawa, S., et al. (1984) Biosynthesis and intracellular transport of enzymes of peroxisomal beta-oxidation. J. Biol. Chem. 259, 6397–6402.

    PubMed  CAS  Google Scholar 

  30. McNew, J. A., and Goodman, J. M. (1994) An oligomeric protein is imported into peroxisomes in vivo. J. Cell Biol. 127, 1245–1257.

    PubMed  CAS  Google Scholar 

  31. Glover, J. R., Andrews, D. W., and Rachubinski, R. A. (1994) Saccharomyces cerevisiae peroxisomal thiolase is imported as a dimer. Proc. Natl. Acad. Sci. U S A 91, 10541–10545.

    PubMed  CAS  Google Scholar 

  32. Stewart, M. Q., Esposito, R. D., Gowani, J., and Goodman, J. M. (2001) Alcohol oxidase and dihydroxyacetone synthase, the abundant peroxisomal proteins of methylotrophic yeasts, assemble in different cellular compartments. J. Cell Sci. 114, 2863–2868.

    PubMed  CAS  Google Scholar 

  33. Walton, P. A., Hill, P. E., and Subramani, S. (1995) Import of stably folded proteins into peroxisomes. Mol. Biol. Cell 6, 675–683.

    PubMed  CAS  Google Scholar 

  34. Agarraberes, F. A., and Dice, J. F. (2001) Protein translocation across membranes. Biochim. Biophys. Acta 1513, 1–24.

    PubMed  CAS  Google Scholar 

  35. Bellion, E., and Goodman, J. M. (1987) Proton ionophores prevent assembly of a peroxisomal protein. Cell 48, 165–73.

    PubMed  CAS  Google Scholar 

  36. Wendland, M. and Subramani, S. (1993) Cytosol-dependent peroxisomal protein import in a permeabilized cell system. J. Cell Biol. 120, 675–685.

    PubMed  CAS  Google Scholar 

  37. Soto, U., Pepperkok, R., Ansorge, W., and Just, W. W. (1993) Import of firefly luciferase into mammalian peroxisomes in vivo requires nucleoside triphosphates. Exp. Cell Res. 205, 66–75.

    PubMed  CAS  Google Scholar 

  38. Fransen, M., Brees, C., Ghys, K., Amery, L., Mannaerts, G. P., Ladant, D., et al. (2002) Analysis of mammalian peroxin interactions using a non-transcription-based bacterial two-hybrid assay. Mol. Cell. Proteomics 1, 243–252.

    PubMed  CAS  Google Scholar 

  39. Gouveia, A. M., Reguenga, C., Oliveira, M. E., Sá-Miranda, C., and Azevedo, J. E. (2000) Characterization of peroxisomal Pex5p from rat liver. Pex5p in the Pex5p-Pex14p membrane complex is a transmembrane protein. J. Biol. Chem. 275, 32444–32451.

    PubMed  CAS  Google Scholar 

  40. Reguenga, C., Oliveira, M. E., Gouveia, A. M., Sá-Miranda, C., and Azevedo, J. E. (2001) Characterization of the mammalian peroxisomal import machinery: Pex2p, Pex5p, Pex12p, and Pex14p are subunits of the same protein assembly. J. Biol. Chem. 276, 29935–29942.

    PubMed  CAS  Google Scholar 

  41. Agne, B., Meindl, N. M., Niederhoff, K., Einwachter, H., Rehling, P., Sickmann, A., et al. (2003) Pex8p: an intraperoxisomal organizer of the peroxisomal import machinery. Mol. Cell 11, 635–646.

    PubMed  CAS  Google Scholar 

  42. Brocard, C., Kragler, F., Simon, M. M., Schuster, T., and Hartig, A. (1994) The tetratri-copeptide repeat-domain of the PAS10 protein of Saccharomyces cerevisiae is essential for binding the peroxisomal targeting signal-SKL. Biochem. Biophys. Res. Commun. 204, 1016–1022.

    PubMed  CAS  Google Scholar 

  43. Dodt, G., Braverman, N., Wong, C., Moser, A., Moser, H. W., Watkins, P., et al. (1995) Mutations in the PTS1 receptor gene, PXR1, define complementaion group 2 of the peroxisome biogenesis disorders. Nat. Genet. 9, 115–125.

    PubMed  CAS  Google Scholar 

  44. Fransen, M., Brees, C., Baumgart, E., Vanhooren, J. C., Baes, M., Mannaerts, G. P., et al. (1995) Identification and characterization of the putative human peroxisomal C-terminal targeting signal import receptor. J. Biol. Chem. 270, 7731–7736.

    PubMed  CAS  Google Scholar 

  45. Terlecky, S. R., Nuttley, W. M., McCollum, D., Sock, E., and Subramani, S. (1995) The Pichia pastoris peroxisomal protein PAS8p is the receptor for the C-terminal tripeptide peroxisomal targeting signal. EMBO J. 14, 3627–3634.

    PubMed  CAS  Google Scholar 

  46. Gatto, G. J., Jr., Geisbrecht, B. V., Gould, S. J., and Berg, J. M. (2000) A proposed model for the PEX5-peroxisomal targeting signal-1 recognition complex. Proteins 38, 241–246.

    PubMed  CAS  Google Scholar 

  47. Gatto, G. J., Jr., Geisbrecht, B. V., Gould, S. J., and Berg, J. M. (2000) Feroxisomal targeting signal-1 recognition by the TPR domains of human PEX5. Nat. Struct. Biol. 7, 1091–1095.

    PubMed  CAS  Google Scholar 

  48. Klein, A. T., Barnett, P., Bottger, G., Konings, D., Tabak, H. F., and Distel, B. (2001) Recognition of peroxisomal targeting signal type 1 by the import receptor Pex5p. J. Biol. Chem. 276, 15034–15041.

    PubMed  CAS  Google Scholar 

  49. Otera, H., Setoguchi, K., Hamasaki, M., Kumashiro, T., Shimizu, N., and Fujiki, Y. (2002) Peroxisomal targeting signal receptor Pex5p interacts with cargoes and import machinery components in a spatiotemporally differentiated manner: conserved Pex5p WXXXF/Y motifs are critical for matrix protein import. Mol. Cell Biol. 22, 1639–1655.

    PubMed  CAS  Google Scholar 

  50. Schliebs, W., Saidowsky, J., Agianian, B., Dodt, G., Herberg, F. W., and Kunau, W. H. (1999) Recombinant human peroxisomal targeting signal receptor PEX5. Structural basis for interaction of PEX5 with PEX14. J. Biol. Chem. 274, 5666–5673.

    PubMed  CAS  Google Scholar 

  51. Saidowsky, J., Dodt, G., Kirchberg, K., Wegner, A., Nastainczyk, W., Kunau, W. H., et al. (2001) The di-aromatic pentapeptide repeats of the human peroxisome import receptor PEX5 are separate high affinity binding sites for the peroxisomal membrane protein PEX14. J. Biol. Chem. 276, 34524–34529.

    PubMed  CAS  Google Scholar 

  52. Elgersma, Y., Kwast, L., Klein, A., Voorn-Brouwer, T., van den Berg, M., Metzig, B., et al. (1996) The SH3 domain of the Saccharomyces cerevisiae peroxisomal membrane protein Pex13p functions as a docking site for Pex5p, a mobile receptor for the import PTS1-containing proteins. J. Cell Biol. 135, 97–109.

    PubMed  CAS  Google Scholar 

  53. Erdmann, R. and Blobel, G. (1996) Identification of Pex13p a peroxisomal membrane receptor for the PTS1 recognition factor. J. Cell Biol. 135, 111–121.

    PubMed  CAS  Google Scholar 

  54. Gould, S. J., Kalish, J. E., Morrell, J. C., Bjorkman, J., Urquhart, A. J., and Crane, D. I. (1996) Pex13p is an SH3 protein of the peroxi-some membrane and a docking factor for the predominantly cytoplasmic PTS1 receptor. J. Cell Biol. 135, 85–95.

    PubMed  CAS  Google Scholar 

  55. Bottger, G., Barnett, P., Klein, A. T., Kragt, A., Tabak, H. F., and Distel, B. (2000) Saccharomyces cerevisiae PTS1 receptor Pex5p interacts with the SH3 domain of the peroxisomal membrane protein Pex13p in an unconventional, non-PXXP-related manner. Mol. Biol. Cell 11, 3963–3976.

    PubMed  CAS  Google Scholar 

  56. Braverman, N., Dodt, G., Gould, S. J., and Valle, D. (1998) An isoform of pex5p, the human PTS1 receptor, is required for the import of PTS2 proteins into peroxisomes. Hum. Mol. Genet. 7, 1195–1205.

    PubMed  CAS  Google Scholar 

  57. Otera, H., Harano, T., Honsho, M., Chaedi, K., Mukai, S., Tanaka, A., et al. (2000) The mammalian peroxin Pex5pL, the longer isoform of the mobile peroxisome targeting signal (PTS) type 1 transporter, translocates the Pex7p.PTS2 protein complex into peroxisomes via its initial docking site, Pex14p. J. Biol. Chem. 275, 21703–21714.

    PubMed  CAS  Google Scholar 

  58. Matsumura, T., Otera, H., and Fujiki, Y. (2000) Disruption of the interaction of the longer isoform of Pex5p, Pex5pL, with Pex7p abolishes peroxisome targeting signal type 2 protein import in mammals. Study with a novel Pex5-impaired Chinese hamster ovary cell mutant. J. Biol. Chem. 275, 21715–21721.

    PubMed  CAS  Google Scholar 

  59. Dodt, G, Warren D, Becker E, Rehling P and Gould SJ. (2001) Domain mapping of human PEX5 reveals functional and structural similarities to Saccharomyces cerevisiae Pex18p and Pex21p. J. Biol. Chem. 276, 41769–41781.

    PubMed  CAS  Google Scholar 

  60. Nito, K., Hayashi, M., and Nishimura, M. (2002) Direct interaction and determination of binding domains among peroxisomal import factors in Arabidopsis thaliana. Plant. Cell Physiol. 43, 355–366.

    PubMed  CAS  Google Scholar 

  61. Zhang, J. W. and Lazarow, P. B. (1996) Peb1p (Pas7p) is an intraperoxisomal receptor for the NH2-terminal, type 2, peroxisomal targeting sequence of thiolase: Peb1p itself is targeted to peroxisomes by an NH2-terminal peptide. J. Cell Biol. 132, 325–334.

    PubMed  CAS  Google Scholar 

  62. Elgersma, Y., Elgersma-Hooisma, M., Wenzel, T., McCaffery, J. M., Farquhar, M. G., and Subramani, S. (1998) A mobile PTS2 receptor for peroxisomal protein import in Pichia pastoris. J. Cell. Biol. 140, 807–820.

    PubMed  CAS  Google Scholar 

  63. Purdue, P. E., Yang, X., and Lazarow, P. B. (1998) Pex 18p and Pex21p, a novel pair of related peroxins essential for peroxisomal targeting by the PTS2 pathway. J. Cell Biol. 143, 1859–1869.

    PubMed  CAS  Google Scholar 

  64. Titorenko, V. I., Smith, J. J., Szilard, R. K., and Rachubinski, R. A. (1998) Pex20p of the yeast Yarrowia lipolytica is required for the oligomerization of thiolase in the cytosol and for its targeting to the peroxisome. J. Cell Biol. 142, 403–420.

    PubMed  CAS  Google Scholar 

  65. Sichting, M., Schell-Steven, A., Prokisch, H., Erdmann, R., and Rottensteiner, H. (2003) Pex7p and Pex20p of Neurospora crassa function together in PTS2-dependent protein import into peroxisomes. Mol. Biol. Cell 14, 810–821.

    PubMed  CAS  Google Scholar 

  66. Einwachter, H., Sowinski, S., Kunau, W. H., and Schliebs, W. (2001) Yarrowia lipolytica Pex20p, Saccharomyces cerevisiae Pex18p/Pex21p and mammalian Pex5pL fulfil a common function in the early steps of the peroxisomal PTS2 import pathway. EMBO Rep. 2, 1035–1039.

    PubMed  CAS  Google Scholar 

  67. Hettema, E. H., Distel, B., and Tabak, H. F. (1999) Import of proteins into peroxisomes. Biochim. Biophys. Acta 1451, 17–34.

    PubMed  CAS  Google Scholar 

  68. Marzioch, M., Erdmann, R., Veenhuis, M., and Kunau, W. H. (1994) PAS7 encodes a novel yeast member of the WD-40 protein family essential for import of 3-oxoacyl-CoA thiolase, a PTS2-containing protein, into peroxisomes. EMBO J. 13, 4908–4918.

    PubMed  CAS  Google Scholar 

  69. Dodt, G. and Gould, S. J. (1996) Multiple PEX genes are required for proper subcellular distribution and stability of Pex5p, the PTS1 receptor: evidence that PTS1 protein import is mediated by a cycling receptor. J. Cell Biol. 135, 1763–1774.

    PubMed  CAS  Google Scholar 

  70. Dammai, V. and Subramani, S. (2001) The human peroxisomal targeting signal receptor, Pex5p, is translocated into the peroxisomal matrix and recycled to the cytosol. Cell 105, 187–196.

    PubMed  CAS  Google Scholar 

  71. Fransen, M., Terlecky, S. R., and Subramani, S. (1998) Identification of a human PTS1 receptor docking protein directly required for peroxisomal protein import. Proc. Natl. Acad. Sci. U. S. A. 95, 8087–8092.

    PubMed  CAS  Google Scholar 

  72. Urquhart, A. J., Kennedy, D., Gould, S. J., and Crane, D. I. (2000) Interaction of Pex5p, the type 1 peroxisome targeting signal receptor, with the peroxisomal membrane proteins Pex14p and Pex13p. J. Biol. Chem. 275, 4127–4136.

    PubMed  CAS  Google Scholar 

  73. Choe, J., Moyersoen, J., Roach, C., Carter, T. L., Fan, E., Michels, P. A., et al. (2003) Analysis of the sequence motifs responsible for the interactions of peroxins 14 and 5, which are involved in glycosome biogenesis in Trypanosoma brucei. Biochemistry 42, 10915–10922.

    PubMed  CAS  Google Scholar 

  74. Albertini, M., Rehling, P., Erdmann, R., Girzalsky, W., Kiel, J. A., Veenhuis, M., et al. (1997) Pex14p, a peroxisomal membrane protein binding both receptors of the two PTS-dependent import pathways. Cell 89, 83–92.

    PubMed  CAS  Google Scholar 

  75. Brocard, C., Lametschwandtner, G., Koudelka, R., and Hartig, A. (1997) Pex14p is a member of the protein linkage map of Pex5p. EMBO J. 16, 5491–5500.

    PubMed  CAS  Google Scholar 

  76. Girzalsky, W., Rehling, P., Stein, K., Kipper, J., Blank, L., Kunau, W. H., et al. (1999) Involvement of Pex13p in Pex14p localization and peroxisomal targeting signal 2-dependent protein import into peroxisomes. J. Cell Biol. 144, 1151–1162.

    PubMed  CAS  Google Scholar 

  77. Pires, J. R., Hong, X., Brockmann, C., Volkmer-Engert, R., Schneider-Mergener, J., Oschkinat, H., et al. (2003) The ScPex13p SH3 domain exposes two distinct binding sites for Pex5p and Pex14p. J. Mol. Biol. 326, 1427–1435.

    PubMed  CAS  Google Scholar 

  78. Oliverira, M. E., Reguenga, C., Gouveia, A. M., Guimaräes, C. P., Schliebs, W., Kunau, W. H., et al. (2002) Mammalian Pex14p: membrane topology and characterisation of the Pex14p-Pex14p interaction. Biochim. Biophys. Acta 1567, 13–22.

    Google Scholar 

  79. Shimizu, N., Itoh, R., Hirono, Y., Otera, H., Ghaedi, K., Tateishi, K., et al. (1999) The peroxin Pex14p. cDNA cloning by functional complementation on a Chinese hamster ovary cell mutant, characterization, and functional analysis. J. Biol. Chem. 274, 12593–12604.

    PubMed  CAS  Google Scholar 

  80. Will, G. K., Soukupova, M., Hong, X., Erdmann, K. S., Kiel, J. A., Dodt, G., et al. (1999) Identification and characterization of the human orthologue of yeast Pex14p. Mol. Cell. Biol. 19, 2265–2277.

    PubMed  CAS  Google Scholar 

  81. Toyama, R., Mukai, S., Itagaki, A., Tamura, S., Shimozawa, N., Suzuki, Y., et al. (1999) Isolation, characterization, and mutation analysis of PEX13-defective Chinese hamster ovary cell mutants. Hum. Mol. Genet. 8, 1673–1681.

    PubMed  CAS  Google Scholar 

  82. Kalish, J. E., Theda, C., Morrell, J. C., Berg, J. M., and Gould, S. J. (1995) Formation of the peroxisome lumen is abolished by loss of Pichia pastoris Pas7p, a zinc-binding integral membrane protein of the peroxisome. Mol. Cell Biol. 15, 6406–6419.

    PubMed  CAS  Google Scholar 

  83. Kalish, J. E., Keller, G. A., Morrell, J. C., Mihalik, S. J., Smith, B., Cregg, J. M., et al. (1996) Characterization of a novel component of the peroxisomal protein import apparatus using fluorescent peroxisomal proteins. EMBO J. 15, 3275–3285.

    PubMed  CAS  Google Scholar 

  84. Chang, C. C., Lee, W. H., Moser, H., Valle, D., and Gould, S. J. (1997) Isolation of the human PEX12 gene, mutated in group 3 of the peroxisome biogenesis disorders. Nat. Genet. 15, 385–388.

    PubMed  CAS  Google Scholar 

  85. Okumoto, K., Shimozawa, N., Kawai, A., Tamura, S., Tsukamoto, T., Osumi, T., et al. (1998) PEX12, the pathogenic gene of group III Zellweger syndrome: cDNA cloning functional complementation on a CHO cell mutant, patient analysis, and characterization of PEX12p. Mol. Cell Biol. 18, 4324–4336.

    PubMed  CAS  Google Scholar 

  86. Warren, D. S., Morrell, J. C., Moser, H. W., Valle, D., and Gould, S. J. (1998) Identification of PEX10, the gene defective in complementation group 7 of the peroxisome-biogenesis disorders. Am. J. Hum. Genet. 63, 347–359.

    PubMed  CAS  Google Scholar 

  87. Harano, T., Shimizu, N., Otera, H., and Fujiki, Y. (1999) Transmembrane topology of the peroxin, Pex2p, an essential component for the peroxisome assembly. J. Biochem. (Tokyo) 125, 1168–1174.

    CAS  Google Scholar 

  88. Huang, Y., Ito, R., Miura, S., Hashimoto, T., and Ito, M. (2000) A missense mutation in the RING finger motif of PEX2 protein disturbs the import of peroxisome targeting signal 1 (PTS1)-containing protein but not the PTS2-containing protein. Biochem. Biophys. Res. Commun. 270, 717–721.

    PubMed  CAS  Google Scholar 

  89. Borden, K. L. (2000) RING domains: master builders of molecular scaffolds? J. Mol. Biol. 295, 1103–1112.

    PubMed  CAS  Google Scholar 

  90. Chang, C. C., Warren, D. S., Sacksteder, K. A., and Gould, S. J. (1999) PEX12 interacts with PEX5 and PEX10 and acts downstream of receptor docking in peroxisomal matrix protein import. J. Cell Biol. 147, 761–774.

    PubMed  CAS  Google Scholar 

  91. Albertini, M., Girzalsky, W., Veenhuis, M., and Kunau, W. H. (2001) Pex12p of Saccharomyces cerevisiae is a component of a multi-protein complex essential for peroxisomal matrix protein import. Eur. J. Cell Biol. 80, 257–270.

    PubMed  CAS  Google Scholar 

  92. Erdmann, R., Wiebel, F. F., Flessau, A., Rytka, J., Beyer, A., Frohlich, K. U., et al. (1991) PAS1, a yeast gene required for peroxisome biogenesis, encodes a member of a novel family of putative ATPases. Cell 64, 499–510.

    PubMed  CAS  Google Scholar 

  93. Spong, A. P. and Subramani, S. (1993) Cloning and characterization of PAS5: a gene required for peroxisome biogenesis in the methylotrophic yeast Pichia pastoris. J. Cell Biol. 123, 535–548.

    PubMed  CAS  Google Scholar 

  94. Patel, S. and Latterich, M. (1998) The AAA team: related ATPases with diverse functions. Trends Cell. Biol. 8, 65–71.

    PubMed  CAS  Google Scholar 

  95. Collins, C. S., Kalish, J. E., Morrell, J. C., McCaffery, J. M. and Gould, S. J. (2000) The peroxisome biogenesis factors pex4p, pex22p, pex1p, and pex6p act in the terminal steps of peroxisomal matrix protein import. Mol. Cell Biol. 20, 7516–7526.

    PubMed  CAS  Google Scholar 

  96. Titorenko, V. I. and Rachubinski, R. A. (2000) Peroxisomal membrane fusion requires two AAA family ATPases, Pex1p and Pex6p. J. Cell Biol. 150, 881–886.

    PubMed  CAS  Google Scholar 

  97. Faber, K. N., Heyman, J. A., and Subramani, S. (1998) Two AAA family peroxins, PpPex1p and PpPex6p, interact with each other in an ATP-dependent manner and are associated with different subcellular membranous structures distinct from peroxisomes. Mol. Cell Biol. 18, 936–943.

    PubMed  CAS  Google Scholar 

  98. Geisbrecht, B. V., Collins, C. S., Reuber, B. E., and Gould, S. J. (1998) Disruption of a PEX1-PEX6 interaction is the most common cause of the neurologic disorders Zellweger syndrome, neonatal adrenoleukodystrophy, and infantile Refsum disease. Proc. Natl. Acad. Sci. U S A 95, 8630–8635.

    PubMed  CAS  Google Scholar 

  99. Kiel, J. A., Hilbrands, R. E., van der Klei, I. J., Rasmussen, S. W., Salomons, F. A., van der Heide, M., et al. (1999) Hansenula polymorpha Pex1p and Pex6p are peroxisome-associated AAA proteins that functionally and physically interact. Yeast 15, 1059–1078.

    PubMed  CAS  Google Scholar 

  100. Gould, S. J. and Collins, C. S. (2002) Opinion: peroxisomal-protein import: is it really that complex? Nat. Rev. Mol. Cell Biol., 3, 382–389.

    PubMed  CAS  Google Scholar 

  101. Birschmann, I., Stroobants, A. K., van den Berg, M., Schafer, A., Rosenkranz, K., Kunau, W. H., et al. (2003) Pex15p of Saccharomyces cerewisiae provides a molecular basis for recruitment of the AAA peroxin Pex6p to pertoxisomal membranes. Mol. Biol. Cell 14, 2226–2236.

    PubMed  CAS  Google Scholar 

  102. Matsumoto, N., Tamura, S., and Fujiki Y. (2003) The pathogenic peroxin Pex26p recruits the Pex1p-Pex6p AAA ATPase complexes to peroxisomes. Nat. Cell Biol. 5, 454–460.

    PubMed  CAS  Google Scholar 

  103. Huhse, B., Rehling, P., Albertini, M., Blank, L., Meller, K., and Kunau, W. H. (1998) Pex17p of Saccharomyces cerevisiae is a novel peroxin and component of the peroxisomal protein translocation machinery. J. Cell Biol. 140, 49–60.

    PubMed  CAS  Google Scholar 

  104. Rehling, P., Skaletz-Rorowski, A., Girzalsky, W., Voorn-Brouwer, T., Franse, M. M., Distel, B., et al. (2000) Pex8p, an intraperoxisomal peroxin of Saccharomyces cerevisiae required for protein transport into peroxisomes binds the PTS1 receptor pex5p. J. Biol. Chem. 275, 3593–3602.

    PubMed  CAS  Google Scholar 

  105. Eckert, J. H. and Johnsson, N. (2003) Pex10p links the ubiquitin conjugating enzyme Pex4p to the protein import machinery of the peroxisome. J. Cell Sci. 116, 3623–3634.

    PubMed  CAS  Google Scholar 

  106. Wiener, E. A., Terlecky, S. R., Nuttley, W. M., and Subramani, S. (1995) Characterization of the yeast and human receptors for the carboxy-terminal tripeptide peroxisomal targeting signal. Cold Spring Harb. Symp. Quant. Biol. 60, 637–648.

    Google Scholar 

  107. Gouveia, A. M., Guimarães, C. P., Oliveira, M. E., Reguenga, C., Sá-Miranda, C., and Azevedo, J. E. (2003) Characterization of the peroxisomal cycling receptor, Pex5p, using a cell-free in vitro import system. J. Biol. Chem. 278, 226–232.

    PubMed  CAS  Google Scholar 

  108. Fujiki, Y. and Lazarow, P. B. (1985) Pos-translational import of fatty acyl-CoA oxidase and catalase into peroxisomes of rat liver in vitro. J. Biol. Chem. 260, 5603–5609.

    PubMed  CAS  Google Scholar 

  109. Imanaka, T., Small, G. M., and Lazarow, P. B. (1987) Translocation of acyl-CoA oxidase into peroxisomes requires ATP hydrolysis but not a membrane potential. J. Cell Biol. 105, 2915–2922.

    PubMed  CAS  Google Scholar 

  110. Miura, S., Miyazawa, S., Osumi, T., Hashimoto T., and Fujiki, Y. (1994) Post-translational import of 3-ketoacyl-CoA thiolase into rat liver peroxisomes in vitro. J. Biochem. 115, 1064–1068.

    PubMed  CAS  Google Scholar 

  111. Walton, P. A., Wendland, M., Subramani, S., Rachubinski, R. A., and Welch, W. J. (1994) Involvement of 70-kD heat-shock proteins in peroxisomal import. J. Cell Biol. 125, 1037–1046.

    PubMed  CAS  Google Scholar 

  112. Wiemer, E. A., Nuttley, W. M., Bertolaet, B. L., Li, X., Francke, U., Wheelock, M. J., et al. (1995) Human peroxisomal targeting signal-1 receptor restores peroxisomal protein import in cells from patients with fatal peroxisomal disorders. J. Cell Biol. 130, 51–65.

    PubMed  CAS  Google Scholar 

  113. Terlecky, S. R., Wiemer, E. A., Nuttley, W. M., Walton, P. A., and Subramani, S. (1996) Signals, receptors, and cytosolic factors involved in peroxisomal protein import. Ann. N. Y. Acad. Sci. 804, 11–20.

    PubMed  CAS  Google Scholar 

  114. Crookes, W. J., and Olsen, L. J. (1998) The effects of chaperones and the influence of protein assembly on peroxisomal protein import. J. Biol. Chem. 273, 17236–17242.

    PubMed  CAS  Google Scholar 

  115. Lopez-Huertas, E., Oh, J., and Baker, A. (1999) Antibodies against pex14p block ATP-independent binding of matrix proteins to peroxisomes in vitro FEBS Lett. 459, 227–229.

    PubMed  CAS  Google Scholar 

  116. Legakis, J. E., and Terleck, S. R. (2001) PTS2 protein import into mammalian peroxisomes. Traffic 2, 252–260.

    Article  PubMed  CAS  Google Scholar 

  117. Terlecky, S. R., Legakis, J. E., Hueni, S. E., and Subramani, S. (2001) Quantitative analysis of peroxisomal protein import in vitro. Exp. Cell Res. 263, 98–106.

    PubMed  CAS  Google Scholar 

  118. Gouveia, A. M., Guimarães, C. P., Oliveira, M. E., Sá-Miranda, C., and Azevedo, J. E. (2003) Insertion of Pex5p into the peroxisomal membrane is cargo protein-dependent. J. Biol. Chem. 278, 4389–4392.

    PubMed  CAS  Google Scholar 

  119. Harano, T., Nose, S., Uezu, R., Shimizu, N., and Fujiki, Y. (2001) Hsp70 regulates the interaction between the peroxisome targeting signal type 1 (PTS1)-receptor Pex5p and PTS1. Biochem. J. 357, 157–165.

    PubMed  CAS  Google Scholar 

  120. Oliveira, M. E., Gouveia, A. M., Pinto, R. A., Sá-Miranda, C., and Azevedo, J. E. (2003) The energetics of Pex5p-mediated peroxisomal protein import. J. Biol. Chem. 278, 39483–39488.

    PubMed  CAS  Google Scholar 

  121. Salomons, F. A., Kiel, J. A., Faber, K. N., Veenhuis, M., and van der Klei, I. J. (2000) Overproduction of Pex5p stimulates import of alcohol oxidase and dihydroxyacetone synthase in a Hansenula polymorpha Pex14 null mutant. J. Biol. Chem. 275, 12603–12611.

    PubMed  CAS  Google Scholar 

  122. van der Klei, I. J., Hilbrands, R. E., Kiel, J. A., Rasmussen, S. W., Cregg, J. M., and Veenhuis, M. (1998) The ubiquitin-conjugating enzyme Pex4p of Hansenula polymorpha is required for efficient functioning of the PTS1 import machinery. EMBO J. 17, 3608–3618.

    PubMed  Google Scholar 

  123. Kunau, W. H. (2001) Peroxisomes: the extended shuttle to the peroxisome matrix. Curr. Biol. 11, 659–662.

    Google Scholar 

  124. van der Klei, I. J., Hilbrands, R. E., Swaving, G. J., Waterham, H. R., Vrieling, E. G., Titorenko, V. I., et al. (1995) The Hansenula polymorpha PER3 gene is essential for the import of PTS1 proteins into the peroxisomal matrix. J. Biol. Chem. 270, 17229–17236.

    PubMed  Google Scholar 

  125. Heyman, J. A., Monosov, E., and Subramani, S. (1994) Role of the PAS1 gene of Pichia pastoris in peroxisome biogenesis. J. Cell Biol. 127, 1259–1273.

    PubMed  CAS  Google Scholar 

  126. Portsteffen, H., Beyer, A., Becker, E., Epplen, C., Pawlak, A., Kunau, W. H., et al. (1997) Human PEX1 is mutated in complementation group 1 of the peroxisome biogenesis disorders. Nat. Genet. 17, 449–452.

    PubMed  CAS  Google Scholar 

  127. Reuber, B. E., Germain-Lee, E., Collins, C. S., Morrell, J. C., Ameritunga, R., Moser, H. W., et al. (1997) Mutations in PEX1 are the most common cause of peroxisome biogenesis disorders. Nat. Genet. 17, 445–448.

    PubMed  CAS  Google Scholar 

  128. Tamura, S., Okumoto, K., Toyama, R., Shimozawa, N., Tsukamoto, T., Suzuki, Y., et al. (1998) Human PEX1 cloned by functional complementation on a CHO cell mutant is responsible for peroxisome-deficient Zellweger syndrome of complementation group I. Proc. Natl. Acad. Sci. U S A 95, 4350–4355.

    PubMed  CAS  Google Scholar 

  129. Titorenko, V. I., Chan, H., and Rachubinski, R. A. (2000) Fusion of small peroxisomal vesicles in vitro reconstructs an early step in the in vivo multistep peroxisome assembly pathway of Yarrowia lipolytica. J. Cell Biol. 148, 29–44.

    PubMed  CAS  Google Scholar 

  130. Tsukamoto, T., Miura, S., and Fujiki, Y. (1991) Restoration by a 35K membrane protein of peroxisome assembly in a peroxisome-deficient mammalian cell mutant. Nature 350, 77–81.

    PubMed  CAS  Google Scholar 

  131. Shimozawa, N., Tsukamoto, T., Suzuki, Y., Orii, T., Shirayoshi, Y., Mori, T., et al. (1992) A human gene responsible for Zellweger syndrome that affects peroxisome assembly. Science 255, 1132–1134.

    PubMed  CAS  Google Scholar 

  132. Eitzen, G. A., Titorenko, V. I., Smith, J. J., Veenhuis, M., Szilard, R. K., and Rachubinski, R. A. (1996) The Yarrowia lipolytica gene PAY5 encodes a peroxisomal integral membrane protein homologous to the mammalian peroxisome assembly factor PAF-1. J. Biol. Chem. 271, 20300–20306.

    PubMed  CAS  Google Scholar 

  133. Liu, Y., Gu, K. L., and Dieckmann, C. L. (1996) Independent regulation of full-length and 5′-truncated PAS5 mRNAs in Saccharomyces cerevisiae. Yeast 12, 135–143.

    PubMed  CAS  Google Scholar 

  134. Waterham, H. R., de Vries, Y., Russel, K. A., Xie, W., Veenhuis, M., and Cregg, J. M. (1996) The Pichia pastoris PER6 gene product is a peroxisomal integral membrane protein essential for peroxisome biogenesis and has sequence similarity to the Zellweger syndrome protein PAF-1. Mol. Cell. Biol. 16, 2527–2536.

    PubMed  CAS  Google Scholar 

  135. van der Leij, I., Franse, M. M., Elgersma, Y., Distel, B., and Tabak, H. F. (1993) PAS10 is a tetratricopeptide-repeat protein that is essential for the import of most matrix proteins into peroxisomes of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U S A 90, 11782–11786.

    PubMed  Google Scholar 

  136. McCollum, D., Monosov, E., and Subramani, S. (1993) The pas8 mutant of Pichia pastoris exhibits the peroxisomal protein import deficiencies of Zellweger syndrome cells—the PAS8 protein binds to the COOH-terminal tripeptide peroxisomal targeting signal, and is a member of the TPR protein family. J. Cell Biol. 121, 761–774.

    PubMed  CAS  Google Scholar 

  137. Nuttley, W. M., Szilard, R. K., Smith, J. J., Veenhuis, M., and Rachubinski, R. A. (1995) The PAH2 gene is required for peroxisome assembly in the methylotrophic yeast Hansenula polymorpha and encodes a member of the tetratricopeptide repeat family of proteins. Gene 160, 33–39.

    PubMed  CAS  Google Scholar 

  138. Yahraus, T., Braverman, N., Dodt, G., Kalish, J. E., Morrell, J. C., Moser, H. W., et al. (1996) The peroxisome biogenesis disorder group 4 gene, PXAAA1, encodes a cytoplasmic ATPase required for stability of the PTS1 receptor. EMBO J. 15, 2914–2923.

    PubMed  CAS  Google Scholar 

  139. Voorn-Brouwer, T., van der Leij, I., Hemrika, W., Distel, B., and Tabak, H. F. (1993) Sequence of the PAS8 gene, the product of which is essential for biogenesis of peroxisomes in Saccharomyces cerevisiae. Biochim. Biophys. Acta 1216, 325–328.

    PubMed  CAS  Google Scholar 

  140. Nuttley, W. M., Brade, A. M., Eitzen, G. A., Veenhuis, M., Aitchison, J. D., Szilard, R. K., et al. (1994) PAY4, a gene required for peroxisome assembly in the yeast Yarrowia lipolytica, encodes a novel member of a family of putative ATPases. J. Biol. Chem. 269, 556–566.

    PubMed  CAS  Google Scholar 

  141. Fukuda, S., Shimozawa, N, Suzuki Y, Zhang, Z, Tomatsu, S, Tsukamoto T, Hashiguchi N, Osumi, T. Masuno, M., Imaizumi, K., Kuroki, Y., Fujiki, Y., Orii, T., et al. (1996) Human peroxisome assembly factor-2 (PAF-2): a gene responsible for group C peroxisome biogenesis disorder in humans. Am. J. Hum. Genet., 59, 1210–1220.

    PubMed  CAS  Google Scholar 

  142. Zhang, J. W., and Lazarow, P. B. (1995) PEB1 (PAS7) in Saccharomyces cerevisiae encodes a hydrophilic, intra-peroxisomal protein that is a member of the WD repeat family and is essential for the import of thiolase into peroxisomes. J. Cell Biol. 129, 65–80.

    PubMed  CAS  Google Scholar 

  143. Braverman, N., Steel, G., Obie, C., Moser, A., Moser, H., Gould, S. J., et al. (1997) Human PEX7 encodes the peroxisomal PTS2 receptor and is responsible for rhizomelic chondrodysplasia punctata. Nat. Genet. 15, 369–376.

    PubMed  CAS  Google Scholar 

  144. Motley, A. M., Hettema, E. H., Hogenhout, E. M., Brites, P., ten Asbroek, A. L., Wijburg, F. A., et al. (1997) Rhizomelic chondrodysplasia punctata is a peroxisomal protein targeting disease caused by a non-functional PTS2 receptor. Nat. Genet. 15, 377–380.

    PubMed  CAS  Google Scholar 

  145. Purdue, P. E., Zhang, J. W., Skoneczny, M., and Lazarow, P. B. (1997) Rhizomelic chondrodysplasia punctata is caused by deficiency of human PEX7, a homologue of the yeast PTS2 receptor. Nat. Genet. 15, 381–384.

    PubMed  CAS  Google Scholar 

  146. Tan, X., Waterham, H. R., Veenhuis, M., and Cregg, J. M. (1995) The Hansenula polymorpha PER8 gene encodes a novel peroxisomal integral membrane protein involved in proliferation. J. Cell Biol. 128, 307–319.

    PubMed  CAS  Google Scholar 

  147. Okumoto, K., Itoh, R., Shimozawa, N., Suzuki, Y., Tamura, S., Kondo, N., et al. (1998) Mutations in PEX10 is the cause of Zellweger peroxisome deficiency syndrome of complementation group B. Hum. Mol. Genet. 7, 1399–1405.

    PubMed  CAS  Google Scholar 

  148. Bjorkman, J., Stetten, G., Moore, C. S., Gould, S. J., and Crane, D. I. (1998) Genomic structure of PEX13, a candidate peroxisome biogenesis disorder gene. Genomics 54, 521–528.

    PubMed  CAS  Google Scholar 

  149. Komori, M., Rasmussen, S. W., Kiel, J. A., Baerends, R. J., Cregg, J. M., van der Klei, I. J., et al. (1997) The Hansenula polymorpha PEX14 gene encodes a novel peroxisomal membrane protein essential for peroxisome biogenesis. EMBO J. 16, 44–53.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge E. Azevedo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azevedo, J.E., Costa-Rodrigues, J., Guimarães, C.P. et al. Protein translocation across the peroxisomal membrane. Cell Biochem Biophys 41, 451–468 (2004). https://doi.org/10.1385/CBB:41:3:451

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:41:3:451

Index Entries

Navigation