Skip to main content
Log in

Evaluation of antimitotic agents by quantitative comparisons of their effects on the polymerization of purified tubulin

  • Orginal Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Most antimitotic compounds have highly specific interactions with tubulin, the major protein component of microtubules. It is, therefore, often desirable to characterize interactions of these agents with tubulin. In particular, quantitative comparisons between new and old (“standard”) agents, between different classes of agent, and between structural analogs (e.g., for a structure-activity relationship study) are important. Because antimitotic drugs have a variety of effects on tubulin and bind at multiple distinct sites on the protein, the tubulin assembly reaction is probably the only universally applicable reaction that can be analyzed. In my laboratory, we use the assembly of purified tubulin induced by higher concentrations of monosodium glutamate as our basic assay system. This report presents a detailed description of our current routine assay, including the effects of a variety of reaction components on the reaction. In addition, the variety of effects that reaction components can have on the quantitative results obtained with drugs, using the colchicine site drug combretastatin A-4 as a model compound, is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Yeh, H. J. C., Chrzanowska, M., and Brossi, A. (1988) The importance of the phenyl-tropolone “aS” configuration in colchicine's binding to tubulin. FEBS Lett. 229, 82–86.

    Article  PubMed  CAS  Google Scholar 

  2. Rowinsky, E. K. and Donehower, R. C. (1995) Paclitaxel (Taxol). N. Engl. J. Med. 332, 1004–1014.

    Article  PubMed  CAS  Google Scholar 

  3. Cortes, J. E. and Pazdur, R. (1995) Docetaxel. J. Clin. Oncol. 13, 2643–2655.

    PubMed  CAS  Google Scholar 

  4. McKellar, Q. A. and Scott, E. W. (1990) The benzimidazole anthelmintic agents—a review. J. Vet. Pharmacol. Ther. 13, 223–247.

    PubMed  CAS  Google Scholar 

  5. Ben-Chetrit, E. and Levy, M. (1998) Colchicine: 1998 update. Semin. Arthritis Rheum. 28, 48–59.

    Article  PubMed  CAS  Google Scholar 

  6. Schiff, P. B., Fant, J., and Horwitz, S. B. (1979) Promotion of microtubule assembly in vitro by taxol. Nature (London) 277, 665–667.

    Article  CAS  Google Scholar 

  7. Bollag, D. M., McQueney, P. A., Zhu, J., et al. (1995) Epothilones, a new class of microtubule stabilizing agents with a taxol-like mechanism of action. Cancer Res. 55, 2325–2333.

    PubMed  CAS  Google Scholar 

  8. ter Haar, E., Kowalski, R. J., Hamel, E., et al. (1996) Discodermolide, a cytotoxic marine agent that stabilizes microtubules more potently than taxol. Biochemistry 35, 243–250.

    Article  PubMed  Google Scholar 

  9. Long, B. H., Carboni, J. M., Wasserman, A. J., et al. (1998) Eleutherobin, a novel cytotoxic agent that induces tubulin polymerization, is similar to paclitaxel (Taxol®). Cancer Res. 58, 1111–1115.

    PubMed  CAS  Google Scholar 

  10. Mooberry, S. L., Tien, G., Hernandez, A. H., Plubrukarn, A., and Davidson, B. S. (1999) Laulimalide and isolaulimalide, new paclitaxel-like microtubule-stabilizing agents. Cancer Res. 59, 653–660.

    PubMed  CAS  Google Scholar 

  11. Pryor, D. E., O'Brate, A., Bilcer, G., et al. (2002) The microtubule stabilizing agent laulimalide does not bind in the taxoid site, kills cells resistant to paclitaxel and epothilones, and may not require its epoxide moiety for activity. Biochemistry 41, 9109–9115.

    Article  PubMed  CAS  Google Scholar 

  12. Bai, R., Lin, C. M., Nguyen, N. Y., Liu, T.-Y., and Hamel, E. (1989) Identification of the cysteine residue of β-tubulin alkylated by the antimitotic agent 2,4-dichlorobenzyl thiocyanate, facilitated by separation of the protein subunits of tubulin by hydrophobic column chromatography. Biochemistry 28, 5606–5612.

    Article  PubMed  CAS  Google Scholar 

  13. Shan, B., Medina, J. C., Santha, E., et al. (1999) Selective, covalent modification of β-tubulin residue Cys-239 by Tl38067, an antitumor agent with in vivo efficacy against multidrug-resistant tumors. Proc. Natl. Acad. Sci. USA 96, 5686–5691.

    Article  PubMed  CAS  Google Scholar 

  14. Legault, J., Gaulin, J.-F., Mounetou, E., et al. (2000) Microtubule disruption induced in vivo by alkylation of β-tubulin by 1-aryl-3-(2-chloroethyl)ureas, a novel class of soft alkylating agents. Cancer Res. 60, 985–992.

    PubMed  CAS  Google Scholar 

  15. Combeau, C., Provost, J., Lancelin, F., et al. (2000) RPR112378 and RPR115781: two representatives of a new family of microtubule assembly inhibitors. Mol. Pharmacol. 57, 553–563.

    PubMed  CAS  Google Scholar 

  16. Wilson, L. (1970) Properties of colchicine binding protein from chick embryo brain. Interactions with vinca alkaloids and podophyllotoxin. Biochemistry 9, 4999–5007.

    Article  PubMed  CAS  Google Scholar 

  17. Schiff, P. B., Kende, A. S., and Horwitz, S. B. (1978) Steganacin: an inhibitor of HeLa cell growth and microtubule assembly in vitro. Biochem. Biophys. Res. Commun. 85, 737–746.

    Article  PubMed  CAS  Google Scholar 

  18. Lin, C. M., Singh, S. B., Chu, P. S., et al. (1988) Interactions of tubulin with potent natural and synthetic analogs of the antimitotic agent combretastatin: a structure—activity study. Mol. Pharmacol. 34, 200–208.

    PubMed  CAS  Google Scholar 

  19. D'Amato, R. J., Lin, C. M., Flynn, E., Folkman, J., and Hamel, E. (1994) 2-Methoxyestradiol, an endogenous mammalian metabolite, inhibits tubulin polymerization by interacting at the colchicine site. Proc. Natl. Acad. Sci. USA 91, 3964–3968.

    Article  PubMed  Google Scholar 

  20. Blokhin, A. V., Yoo, H.-D., Geralds, R. S., Nagle, D. G., Gerwick, W. H., and Hamel, E. (1995) Characterization of the interaction of the marine cyanobacterial natural product curacin A with the colchicine site of tubulin and initial structure—activity studies with analogs. Mol. Pharmacol. 48, 523–531.

    PubMed  CAS  Google Scholar 

  21. Hoebeke, J., Van Nijen, G., and De Brabander, M. (1976) Interaction of oncodazole (R 17934), a new antitumoral drug, with rat brain tubulin. Biochem. Biophys. Res. Commun. 69, 319–324.

    Article  PubMed  CAS  Google Scholar 

  22. Friedman, P. A. and Platzer, E. G. (1978) Interaction of anthelmintic benzimidazoles and benzimidazole derivatives with bovine brain tubulin. Biochim. Biophys. Acta 544, 605–614.

    PubMed  CAS  Google Scholar 

  23. Beutler, J. A., Hamel, E., Vlietinck, A. J., et al. (1998) Structure—activity requirements for flavone cytotoxicity and binding to tubulin. J. Med. Chem. 41, 2333–2338.

    Article  PubMed  CAS  Google Scholar 

  24. Hour, M.-J., Huang, L.-J., Kuo, S.-C., et al. (2000) 6-alkylamino and 2,3-dihydro-3′-methoxy-2-phenyl-4-quinazolinones and related compounds: their synthesis, cytotoxicity, and inhibition of tubulin polymerization. J. Med. Chem. 43, 4479–4487.

    Article  PubMed  CAS  Google Scholar 

  25. Paull, K. D., Lin, C. M., Malspeis, L., and Hamel, E. (1992) Identification of novel antimitotic agents acting at the tubulin level by computer-assisted evaluation of differential cytotoxicity data. Cancer Res. 52, 3892–3900.

    PubMed  CAS  Google Scholar 

  26. Bai, R., Covell, D. G., Pei, X.-F., et al. (2000) Mapping the binding site of colchicinoids on β-tubulin: 2-chloroacetyl-2-demethylthiocolchicine covalently reacts predominantly with cysteine 239 and secondarily with cysteine 354. J. Biol. Chem. 275, 40,443–40,452.

    CAS  Google Scholar 

  27. Sternlicht, H. and Ringel, I. (1979) Colchicine inhibition of microtubule assembly via copolymer formation. J. Biol. Chem. 254, 10,540–10,548.

    CAS  Google Scholar 

  28. Sternlicht, H., Ringel, I., and Szasz, J. (1980) The co-polymerization of tubulin and tubulin-colchicine complex in the absence and presence of associated proteins. J. Biol. Chem. 255, 9138–9148.

    PubMed  CAS  Google Scholar 

  29. Bai, R., Pettit, G. R., and Hamel, E. (1990) Binding of dolastatin 10 to tubulin at a distinct site for peptide antimitotic agents near the exchangeable nucleotide and vinca alkaloid sites. J. Biol. Chem. 265, 17,141–17,149.

    CAS  Google Scholar 

  30. Bai, R., Paull, K. D., Herald, C. L., Malspeis, L., Pettit, G. R., and Hamel, E. (1991) Halichondrin B and homohalichondrin B, marine natural products binding in the vinca domain of tubulin: discovery of tubulin-based mechanism of action by analysis of differential cytotoxicity data. J. Biol. Chem. 266, 15,882–15,889.

    CAS  Google Scholar 

  31. Bai, R., Cichacz, Z. A., Herald, C. L., Pettit, G. R., and Hamel, E. (1993) Spongistatin 1, a highly cytotoxic, sponge-derived, marine natural product that inhibits mitosis, microtubule assembly, and the binding of vinblastine to tubulin. Mol. Pharmacol. 44, 757–766.

    PubMed  CAS  Google Scholar 

  32. Bai, R., Taylor, G. F., Cichacz, Z. A., et al. (1995) The spongistatins, potently cytotoxic inhibitors of tubulin polymerization, bind in a distinct region of the vinca domain. Biochemistry 34, 9714–9719.

    Article  PubMed  CAS  Google Scholar 

  33. Hamel, E. and Covell, D. G. (2002) Antimitotic peptides and depsipeptides. Curr. Med. Chem.—Anti-Cancer Agents 2, 19–53.

    Article  CAS  Google Scholar 

  34. Wilson, L., Jordan, M. A., Morse, A., and Margolis, R. L. (1982) Interaction of vinblastine with steady-state microtubules in vitro. J. Mol. Biol. 159, 125–149.

    Article  PubMed  CAS  Google Scholar 

  35. Jordan, M. A., Margolis, R. L., Himes, R. H., and Wilson, L. (1986) Identification of a distinct class of vinblastine binding sites on microtubules. J. Mol. Biol. 187, 61–73.

    Article  PubMed  CAS  Google Scholar 

  36. Jordan, M. A. (2002) Mechanism of action of antitumor drugs that interact with microtubules and tubulin. Curr. Med. Chem.—Anti-Cancer Agents 2, 1–17.

    Article  CAS  Google Scholar 

  37. Duanmu, C., Shahrik, L., Ho, H. H., and Hamel, E. (1989) Tubulin-dependent hydrolysis of GTP as a screening test to identify new antimitotic agents: application to carbamates of aromatic amines. Cancer Res. 49, 1344–1348.

    Google Scholar 

  38. Gaskin, F., Cantor, C. R., and Shelanski, M. L. (1974) Turbidimetric studies of the in vitro assembly and disassembly of porcine neurotubules. J. Mol. Biol. 89, 737–758.

    Article  PubMed  CAS  Google Scholar 

  39. Weisenberg, R. C. (1972) Microtubule formation in vitro in solutions containing low calcium concentrations. Science 177, 1104–1105.

    Article  PubMed  CAS  Google Scholar 

  40. Shelanski, M. L., Gaskin, F., and Cantor, C. R. (1973) Microtubule assembly in the absence of added nucleotides. Proc. Natl. Acad. Sci. USA 70, 765–768.

    Article  PubMed  CAS  Google Scholar 

  41. Cleveland, D. W., Hwo, S.-Y., and Kirschner, M. W. (1977) Physical and chemical properties of purified tau factor and the role of tau in microtubule assembly. J. Mol. Biol. 116, 227–247.

    Article  PubMed  CAS  Google Scholar 

  42. Murphy, D. B., Johnson, K. A., and Borisy, G. G. (1977) Role of tubulin-associated proteins in microtubule nucleation and elongation. J. Mol. Biol. 117, 33–52.

    Article  PubMed  CAS  Google Scholar 

  43. Olmsted, J. B. and Borisy, G. G. (1975) Ionic and nucleotide requirements for microtubule polymerization in vitro. Biochemistry 14, 2996–3004.

    Article  PubMed  CAS  Google Scholar 

  44. Pierson, G. B., Burton, P. R., and Himes, R. H. (1978) Alterations in number of protofilaments in microtubules assembled in vitro. J. Cell Biol. 76, 223–228.

    Article  PubMed  CAS  Google Scholar 

  45. Böhm, K. J., Vater, W., Fenske, H., and Unger, E. (1984) Effect of microtubule-associated proteins on the protofilament number of microtubules assembled in vitro. Biochim. Biophys. Acta 800, 119–126.

    PubMed  Google Scholar 

  46. Chrétien, D., Verde, F., Karsenti, E., and Wade, R. H. (1992) Lattice defects in microtubules: protofilament numbers vary within individual microtubules. J. Cell Biol. 117, 1031–1040.

    Article  PubMed  Google Scholar 

  47. Waxman, P. G., del Campo, A. A., Lowe, M. C., and Hamel, E. (1981) Induction of polymerization of purified tubulin by sulfonate buffers: marked differences between 4-morpholineethanesulfonate (Mes) and 1,4-piperazineethanesulfonate (Pipes). Eur. J. Biochem. 120, 129–136.

    Article  PubMed  CAS  Google Scholar 

  48. Frigon, R. P. and Timasheff, S. N. (1975) Magnesium-induced self-association of calf brain tubulin. I. Stoichiometry. Biochemistry 14, 4559–4566.

    Article  PubMed  CAS  Google Scholar 

  49. Frigon, R. P. and Timasheff, S. N. (1975) Magnesium-induced self-association of calf brain tubulin. II. Thermodynamics. Biochemistry 14, 4567–4573.

    Article  PubMed  CAS  Google Scholar 

  50. Himes, R. H., Burton, P. R., and Gaito, J. M. (1977) Dimethyl sulfoxide-induced self-assembly of tubulin lacking associated proteins. J. Biol. Chem. 252, 6222–6228.

    PubMed  CAS  Google Scholar 

  51. Hamel, E. and Lin, C. M. (1981) Glutamate-induced polymerization of tubulin: characteristics of the reaction and application to the large-scale purification of tubulin. Arch. Biochem. Biophys. 209, 29–40.

    Article  PubMed  CAS  Google Scholar 

  52. Hamel, E. and Lin, C. M. (1981) Stabilization of the colchicine-binding activity of tubulin by organic acids. Biochim. Biophys. Acta 675, 226–231.

    PubMed  CAS  Google Scholar 

  53. Himes, R. H. (1991) Interactions of the Catharanthus (Vinca) alkaloids with tubulin and microtubules. Pharmacol. Ther. 51, 257–267.

    Article  PubMed  CAS  Google Scholar 

  54. Bai, R., Taylor, G. F., Schmidt, J. M., et al. (1995) Interaction of dolastatin 10 with tubulin: induction of aggregation and binding and dissociation reactions. Mol. Pharmacol. 47, 965–976.

    PubMed  CAS  Google Scholar 

  55. Hamel, E., Blokhin, A. V., Nagle, D. G., Yoo, H.-D., and Gerwick, W. H. (1995) Limitations in the use of tubulin polymerization assays as a screen for the identification of new antimitotic agents: the potent marine natural product curacin A as an example. Drug Dev. Res. 34, 110–120.

    Article  CAS  Google Scholar 

  56. Hastie, S. B. (1991) Interactions of colchicine with tubulin. Pharmacol. Ther. 51, 377–401.

    Article  PubMed  CAS  Google Scholar 

  57. Grover, S., Boyé, O., Getahun, Z., Brossi, A., and Hamel, E. (1992) Chloroacetates of 2- and 3-demethylthiocolchicine: specific covalent interaction with tubulin with preferential labeling of the β-subunit. Biochem. Biophys. Res. Commun. 187, 1350–1358.

    Article  PubMed  CAS  Google Scholar 

  58. Abraham, I., Dion, R. L., Duanmu, C., Gottesman, M. M., and Hamel, E. (1986) 2,4-Dichlorobenzyl thiocyanate, an antimitotic agent that alters microtubule morphology. Proc. Natl. Acad. Sci. USA 83, 6839–6843.

    Article  PubMed  CAS  Google Scholar 

  59. Bai, R., Duanmu, C., and Hamel, E. (1989) Mechanism of action of the antimitotic drug 2,4-dichlorobenzyl thiocyanate: alkylation of sulfhydryl group(s) of β-tubulin. Biochim. Biophys. Acta 994, 12–20.

    PubMed  CAS  Google Scholar 

  60. Pinney, K. G., Bounds, A. D., Dingeman, K. M., et al. (1999) A new anti-tubulin agent containing the benzo[b]thiophene ring system. Bioorg. Med. Chem. Lett. 9, 1081–1086.

    Article  PubMed  CAS  Google Scholar 

  61. Correia, J. J., Baty, L. T., and Williams, R. C., Jr. (1987) Mg2+ dependence of guanine nucleotide binding to tubulin. J. Biol. Chem. 262, 17,278–17,284.

    CAS  Google Scholar 

  62. Osei, A. A., Everett, G. W., and Himes, R. H. (1990) Evidence that the tightly bound magnesium in tubulin is associated with the N-site GTP. FEBS Lett. 276, 85–87.

    Article  PubMed  CAS  Google Scholar 

  63. Grover, S. and Hamel, E. (1994) The magnesium-GTP interaction in microtubule assembly. Eur. J. Biochem. 222, 163–172.

    Article  PubMed  CAS  Google Scholar 

  64. Lin, C. M., Ho, H. H., Pettit, G. R., and Hamel, E. (1989) Antimitotic natural products combretastatin A-4 and combretastatin A-2: studies on the mechanism of their inhibition of the binding of colchicine to tubulin. Biochemistry 28, 6984–6991.

    Article  PubMed  CAS  Google Scholar 

  65. Gaskin, F. and Kress, Y. (1977) Zinc ion-induced assembly of tubulin. J. Biol. Chem. 252, 6918–6924.

    PubMed  CAS  Google Scholar 

  66. Buttlaire, D. H., Czuba, B. A., Stevens, T. H., Lee, Y. C., and Himes, R. H. (1980) Manganous ion binding to tubulin. J. Biol. Chem. 255, 2164–2168.

    PubMed  CAS  Google Scholar 

  67. Haskins, K. M., Zombola, R. R., Boling, J. M., Lee, Y. C., and Himes, R. H. (1980) Tubulin assembly induced by cobalt and zinc. Biochem. Biophys. Res. Commun. 95, 1703–1709.

    Article  PubMed  CAS  Google Scholar 

  68. Eagle, G. R., Zombola, R. R., and Himes, R. H. (1983) Tubulin-zinc interactions: binding and polymerization studies. Biochemistry 22, 221–228.

    Article  PubMed  CAS  Google Scholar 

  69. Himes, R. H., Lee, Y. C., Eagle, G. R., Haskins, K. M., Babler, S. D., and Ellermeier, J. (1982) The relationship between cobalt binding to tubulin and stimulation of assembly. J. Biol. Chem. 257, 5839–5845.

    PubMed  CAS  Google Scholar 

  70. Huang, A. B., Lin, C. M., and Hamel, E. (1985) Differential effects of magnesium on tubulin-nucleotide interactions. Biochim. Biophys. Acta 832, 22–32.

    PubMed  CAS  Google Scholar 

  71. Hamel, E. and Lin, C. M. (1984) Separation of active tubulin and microtubule-associated proteins by ultracentrifugation and isolation of a component causing the formation of microtubule bundles. Biochemistry 23, 4173–4184.

    Article  PubMed  CAS  Google Scholar 

  72. Hamel, E., Lustbader, J., and Lin, C. M. (1984) Deoxyguanosine nucleotide analogues: potent stimulators of microtubule nucleation with reduced affinity for the exchangeable nucleotide site of tubulin. Biochemistry 23, 5314–5325.

    Article  PubMed  CAS  Google Scholar 

  73. Verdier-Pinard, P., Wang, Z., Mohanakrishnan, A. K., Cushman, M., and Hamel, E. (2000) A steroid derivative with paclitaxel-like effects on tubulin polymerization. Mol. Pharmacol. 57, 568–575.

    PubMed  CAS  Google Scholar 

  74. Hamel, E., Sackett, D. L., Vourloumis, D., and Nicolaou, K. C. (1999) The coral-derived natural products eleutherobin and sarcodictyins A and B: effects on the assembly of purified tubulin with and without microtubule-associated proteins and binding at the polymer taxoid site. Biochemistry 38, 5490–5498.

    Article  PubMed  CAS  Google Scholar 

  75. Lataste, H., Senilh, V., Wright, M., Guénard, D., and Potier, P. (1984) Relationships between the structures of taxol and baccatine III derivatives and their in vitro action on the disassembly of mammalian brain and Physarum amoebal microtubules. Proc. Natl. Acad. Sci. USA 81, 4090–4094.

    Article  PubMed  CAS  Google Scholar 

  76. Lin, C. M., Jiang, Y. Q., Chaudhary, A. G., Rimoldi, J. M., Kingston, D. G. I., and Hamel, E. (1996) A convenient tubulin-based quantitative assay for paclitaxel (Taxol) derivatives more effective in inducing assembly than the parent compound. Cancer Chemother. Pharmacol. 38, 136–140.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernest Hamel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamel, E. Evaluation of antimitotic agents by quantitative comparisons of their effects on the polymerization of purified tubulin. Cell Biochem Biophys 38, 1–21 (2003). https://doi.org/10.1385/CBB:38:1:1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:38:1:1

Index Entries

Navigation