Skip to main content
Log in

Programming the Drosophila embryo 2

From genotype to phenotype

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Although development is a single hierarchical process, scientists tend to study only one level at a time: molecular, cellular, or organismal. The data and theory are available to integrate molecular, cellular, and organismal levels into a series of maps for development of the Drosophila embryo. These maps link the transcriptional cascade with mitotic and phenotypic fate maps to trace hiera-archical mechanisms of development from the genotype in the egg to the phenotype in the larva.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Foe, V. E. (1989). Mitotic domains reveal early commitment of cells in Drosophila embryos. Develop. 107, 1–22.

    CAS  Google Scholar 

  2. Bodnar, J. W. (1997). Programming the Drosophila embryo. J. Theor. Biol. 188, 391–445.

    PubMed  CAS  Google Scholar 

  3. Reinitz, J. (1999). GeNet web site. http://www.mssm.edu/molbio/genet/

  4. Gabay, L., Seger, R., and Shilo, B. Z. (1997). MAP kinase in situ activation atlas during Drosophila embryogenesis. Development 124, 3535–3541.

    PubMed  CAS  Google Scholar 

  5. Greenwood, S. and Struhl, G. (1997). Different levels of Ras activity can specify distinct transcriptional and morphological consequences in early Drosophila embryos. Development 124, 4879–4886.

    PubMed  CAS  Google Scholar 

  6. Rushlow, C. and Levine, M. (1990). Role of the zerknullt gene in dorsal-ventral pattern formation in Drosophila. Adv. Genet. 27, 277–307.

    PubMed  CAS  Google Scholar 

  7. Cohen, S. and Jürgens, G. (1991). Drosophila headlines. Trends Genet. 7, 267–272.

    PubMed  CAS  Google Scholar 

  8. Finkelstein, R. and Perrimon, N. (1991). The molecular genetics of head development in Drosophila melanogaster. Develop. 112, 899–912.

    CAS  Google Scholar 

  9. Jürgens, G. (1988). Head and tail development of the Drosophila embryo involves spalt, a novel homeotic gene. EMBO J. 7, 189–196.

    PubMed  Google Scholar 

  10. Bergson, C. and McGinnis, W. (1990). An autoregulatory enhancer element of the Drosophila homeotic gene Deformed. EMBO J. 9, 4287–4297.

    PubMed  CAS  Google Scholar 

  11. Cohen, S. and Jürgens, G. (1990). Mediation of Drosophila head development by gap-like segementation genes. Nature 346, 482–488.

    PubMed  CAS  Google Scholar 

  12. McGinnis, W., Jack, T., Chadwick, R., Regulski, M., Bergson, C., McGinnis, N., and Kuziora, M. (1990). Establishment and maintenance of position-specific expression of the drosophila homeotic selector gene deformed. Adv. Genet. 27, 363–402.

    Article  PubMed  CAS  Google Scholar 

  13. Baumgartner, S. and Noll, M. (1991). Network of interactions among pair-rule genes regulating paired expression during primordial segmentation of Drosophila. Mech. Dev. 33, 1–18.

    Google Scholar 

  14. Stanojevic, D., Small, S., and Levine, M. (1991). Regulation of a Segmentation Stripe by Overlapping Activators and Repressors in the Drosophila Embryo. Sci. 254, 1385–1387.

    CAS  Google Scholar 

  15. Gao, Q., Wang, Y., and Finkelstein, R. (1996). orthodenticle regulation during embryonic head development in Drosophila. Mech. Devel. 56, 3–15.

    CAS  Google Scholar 

  16. Kaufmann, T. C. (1999). Kaufmann Lab Web Site. http://sunflower.bio.indiana.edu/~kaufman/kaufmanlab/.

  17. Manoukian, A. S. and Krause, H. M. (1993). Control of segmental asymmetry in Drosophila embryos. Development 118, 785–796.

    PubMed  CAS  Google Scholar 

  18. Illmensee, K. (1978). Drosophila Chimeras and the Problem of Determination. in Genetic Mosiacs and Cell Differentiation. Results and Problems in Cell Differentiation, vol. 9, New York, Springer-Verlag, pp. 52–68.

    Google Scholar 

  19. DiNardo, S. and Heemskerk, J. (1990). Molecular and cellular interactions responsible for intrasegmental patterning during Drosophila embryogenesis. Sem. Cell Biol. 1, 173–183.

    CAS  Google Scholar 

  20. Howard, K. (1990). The blastoderm prepattern. Sem. Cell Biol. 1, 161–172.

    CAS  Google Scholar 

  21. Gilbert, S. F. (1991). Developmental Biology. Sunderland, MA: Sinauer Associates.

    Google Scholar 

  22. Perrimon, N. (1994). The Genetic Basis of Patterned Baldness in Drosophila. Cell 76, 781–784.

    PubMed  CAS  Google Scholar 

  23. Strecker, T. R., Kongsuwan, K., Lengyel, J. A., and Merriam, J. R. (1986). The zygotic mutant tailless affects the anterior and posterior ectodermal regions of the Drosophila embryo. Develop. Biol. 113, 64–76.

    PubMed  CAS  Google Scholar 

  24. Jack, T. J., Regulski, M., and McGinnis, W. (1988). Pair-rule segmentation genes regulate the expression of the homeotic selector gene, Deformed. Genes Dev. 2, 635–651.

    CAS  Google Scholar 

  25. Dalton, D., Chadwick, R., and McGinnis, W. (1989). Expression and embryonic function of empty spiracles: a Drosophila homeo box gene with two patterning functions on the anterior-posterior axis of the embryo. Genes Dev. 3, 1940–1956.

    PubMed  CAS  Google Scholar 

  26. Mahaffey, J. W., Diederich, R. J., and Kaufman, T. C. (1989). Novel patterns of homeotic protein accumulation in the head of the Drosophila embryo. Development 105, 167–174.

    PubMed  CAS  Google Scholar 

  27. Kania, M. A., Bonner, A. S., Duffy, J. B., and Gergen, J. P. (1990). The Drosophila segmentation gene runt encodes a novel nuclear regulatory protein that is also expressed in the developing nervous system. Genes and Dev. 4, 1701–1713.

    PubMed  CAS  Google Scholar 

  28. Ferguson, E. L. and Anderson, K. V. (1992). Localized enhancement and repression of the activity of the TGF-beta family member, decapentaplegic, is necessary for dorsal-ventral pattern formation in the Drosophila embryo. Development 114, 583–597.

    PubMed  CAS  Google Scholar 

  29. Lamka, M. L., Boulet, A. M., and Sakonju, S. (1992). Ectopic expression of UBX and ABD-B proteins during Drosophila embryogenesis: competition, not a functional hierarchy, explains phenotypic suppression. Development 116, 841–854.

    PubMed  CAS  Google Scholar 

  30. St. Johnston, D. and Nüsslein-Volhard, C. (1992). The origin of pattern and polarity in the Drosophila Embryo. Cell 68, 201–219.

    PubMed  CAS  Google Scholar 

  31. Panzer, S., Weigel, D., and Beckendorf, S. K. (1992). Organogenesis in Drosophila melanogaster: embryonic salivary gland determination is controlled by homeotic and dorsoventral patterning genes. Development 114, 49–57.

    PubMed  CAS  Google Scholar 

  32. Baumann, P. and Skaer, H. (1993) The Drosophila EGF receptor homologue (DER) is required for Malpighian tubule development. Dev. Suppl., 65–75.

  33. Brönner, G., Chu-Graff, Q., Doe, C. Q., Cohen, B., Weigel, D., Taubert, H., and Jäckle, H. (1994). Spl/egr-like zinc-finger protein required for endoderm specification and germ layer formation in Drosophila. Nature 369, 664–668.

    PubMed  Google Scholar 

  34. Reuter, R. (1994). The gene serpent has homeotic properties and specifies endoderm versus ectoderm within the Drosophila gut. Development 120, 1123–1135.

    PubMed  CAS  Google Scholar 

  35. Hotta, Y. and Benzer, S. (1973). Mapping of Behavior in Drosophila Mosaics. Symp. Soc. Dev. Biol. 31, 129–167.

    PubMed  CAS  Google Scholar 

  36. Jürgens, G., Lehmann, R., Schardin, M., and Nüsslein-Volhard, C. (1986). Segmental organisation of the head in the embryo of Drosophila melanogaster. Roux's Arch. Dev. Biol. 195, 359–377.

    Google Scholar 

  37. Ashburner, M., and Wright, T. R. F., (eds.), 1978. The genetics and biology of Drosophila.

  38. Klambt, C., Glazer, L., and Shilo, B. Z. (1992). Breathless, a Drosophila Fgf receptor homolog, is essential for migration of tracheal and specific midline glial cells. Genes Dev. 6, 1668–1678.

    PubMed  CAS  Google Scholar 

  39. Kuo, Y. M., Jones, N., Zhou, B., Panzer, S., Larson, V., and Beckendorf, S. K. (1996). Salivary duct determination in Drosophila: roles of the EGF receptor signalling pathway and the transcription factors fork head and trachealess. Development 122, 1909–1917.

    PubMed  CAS  Google Scholar 

  40. Andrew, D. J. (1998) Regulation and formation of the Drosophila salivary glands. Ann NY Acad Sci 842, 55–69.

    PubMed  CAS  Google Scholar 

  41. Isaac, D. D. and Andrew, D. J. (1996). Tubulo-genesis in Drosophila: a requirement for the trachealess gene product. Genes Dev. 10, 103–117.

    PubMed  CAS  Google Scholar 

  42. Henderson, K. D., Isaac, D. D., and Andrew, D. J. (1999). Cell fate specification in the Drosophila salivary gland: the integration of homeotic gene function with the DPP signaling cascade. Dev. Biol. 205, 10–21.

    PubMed  CAS  Google Scholar 

  43. Lawrence, P. A., Johnston, P., MacDonald, P., and Struhl, G. (1987). Borders of parasegments in Drosophila embryos are delimited by the fushi tarazu and even-skipped genes. Nature 328, 440–442.

    PubMed  CAS  Google Scholar 

  44. Lawrence, P. A. (1992). The Making of a Fly: The Genetics of Animal Design. Oxford, Blackwell.

    Google Scholar 

  45. Savant-Bhonsale, S. and Montell, D. J. (1993) Torso-like encodes the localized determinant of Drosophila terminal pattern formation. Genes Dev. 7, 2548–2555.

    PubMed  CAS  Google Scholar 

  46. Martin, J. R., Raibaud, A., and Ollo, R. (1994). Terminal pattern elements in Drosophila embryo induced by the torso-like protein. Nat. 367, 741–745.

    CAS  Google Scholar 

  47. Bray, S. J. and Kafatos, F. C. (1991) Developmental function of Elf-1: an essential transcription factor during embryogenesis in Drosophila. Genes Dev. 5, 1672–1683.

    PubMed  CAS  Google Scholar 

  48. Liaw, G. J., Rudolph, K. M., Huang, J. D., Dubnicoff, T., Courey, A. J., and Lengyel, J. A. (1995). The torso response element binds GAGA and NTF-1/Elf-1, and regulates tailless by relief of repression. Genes Dev. 9, 3163–3176.

    PubMed  CAS  Google Scholar 

  49. Paroush, Z., Wainwright, S. M., and Ish-Horowicz, D. (1997). Torso signalling regulates terminal patterning in Drosophila by antagonizing Groucho-mediated repression. Development 124, 3827–3834.

    PubMed  CAS  Google Scholar 

  50. Hoch, M., Gerwin, N., Taubert, H., and Jackle, H. (1992). Competition for overlapping sites in the regulatory region of the Drosophila gene Kruppel. Science 256, 94–97.

    PubMed  CAS  Google Scholar 

  51. Rusch, J. and Levine, M. (1994). Regulation of the dorsal morphogen by the Toll and torso signaling pathways: a receptor tyrosine kinase selectively masks transcriptional repression. Genes Dev. 8, 1247–1257.

    PubMed  CAS  Google Scholar 

  52. Margolis, J. S., Borowsky, M. L., Steingrimsson, E., Shim, C. W., Lengyel, J. A., and Posakony, J. W. (1995). Posterior stripe expression of hunch-back is driven from two promoters by a common enhancer element. Development 121, 3067–3077.

    PubMed  CAS  Google Scholar 

  53. Nibu, Y., Zhang, H., Bajor, E., Barolo, S., Small, S., and Levine, M. (1998). dCtBp mediates transcriptional repression by Knirps, Kruppel and Snail in the Drosophila embryo. Embo J. 17, 7009–7020.

    PubMed  CAS  Google Scholar 

  54. Goldstein, R. E., Jimnez, G., Cook, O., Gur, D., and Paroush, Z. (1999) Huckebein repressor activity in drosophila terminal patterning is mediated by groucho. Development 126, 3747–3755.

    PubMed  CAS  Google Scholar 

  55. Zaret, K. (1999). Developmental competence of the gut endoderm: genetic potentiation by GATA and HNF3/fork head proteins Dev. Biol. 209, 1–10.

    PubMed  CAS  Google Scholar 

  56. Casanova, J. (1990). Pattern formation under the control of the terminal system in the Drosophila embryo. Development 110, 621–628.

    PubMed  CAS  Google Scholar 

  57. Casares, F. and Sanchez-Herrero, E. (1995). Regulation of the infraabdominal regions of the bithorax complex of Drosophila by gap genes. Development 121, 1855–1866.

    PubMed  CAS  Google Scholar 

  58. Small, S., Kraut, R., Hoey, T., Warrior, R., and Levine, M. (1991). Transcriptional regulation of a pair-rule stripe in Drosophila. Genes Dev. 5, 827–839.

    PubMed  CAS  Google Scholar 

  59. Langeland, J. A., Attai, S. F., Vorwerk, K., and Carroll, S. B. (1994). Positioning adjacent pairrule stripes in the posterior Drosophila embryo. Development 120, 2945–2955.

    PubMed  CAS  Google Scholar 

  60. Small, S., Blair, A., and Levine, M. (1996). Regulation of two pair-rule stripes by a single enhancer in the Drosophila embryo. Dev. Biol. 175, 314–324.

    PubMed  CAS  Google Scholar 

  61. Wu, X., Vakani, R., and Small, S. (1998). Two distinct mechanisms for differential positioning of gene expression borders involving the Drosophila gap protein giant. Development 125, 3765–3774.

    PubMed  CAS  Google Scholar 

  62. Fujioka, M., Emi-Sarker, Y., Yusibova, G. L., Goto, T., and Jaynes, J. B. (1999). Analysis of an even-skipped rescue transgene reveals both composite and discrete neuronal and early blastoderm enhancers, and multi-stripe positioning by gap gene repressor gradients. Development 126, 2527–2538.

    PubMed  CAS  Google Scholar 

  63. van den Heuvel, M., Nusse, R., Johnston, P., and Lawrence, P. A. (1989). Distribution of the wingless gene product in Drosophila embryos: a protein involved in cell-cell communication. Cell 59, 739–749.

    PubMed  Google Scholar 

  64. Hidalgo, A. and Ingham, P. (1990). Cell patterning in the Drosophila segment: spatial regulation of the segment polarity gene patched. Development 110, 291–301.

    PubMed  CAS  Google Scholar 

  65. Heemskerk, J., DiNardo, S., Kostriken, R., et al. (1991). Multiple modes of engrailed regulation in the progression towards cell fate determination. Nature 352, 404–410.

    PubMed  CAS  Google Scholar 

  66. Ingham, P. W., Taylor, A. M., and Nakano, Y. (1991). Role of the Drosophila patched gene in positional signalling. Nature 353, 184–187.

    PubMed  CAS  Google Scholar 

  67. Clifford, R. and Schupbach, T. (1992). The torpedo (DER) receptor tyrosine kinase is required at multiple times during Drosophila embryogenesis. Development 115, 853–872.

    PubMed  CAS  Google Scholar 

  68. Peifer, M. and Bejsovec, A. (1992). Knowing your neighbors: Cell interactions determine intrasegmental patterning in Drosophila. Trends in Genetics 8, 243–249.

    Google Scholar 

  69. Mohler, J. and Vani, K. (1992). Molecular organization and embryonic expression of the hedgehog gene involved in cell-cell communication in segmental patterning of Drosophila. Development 115, 957–971.

    PubMed  CAS  Google Scholar 

  70. Schwartz, C., Locke, J., Nishida, C., and Kornberg, T. B. (1995). Analysis of cubitus interruptus regulation in Drosophila embryos and imaginal disks. Development 121, 1625–1635.

    PubMed  CAS  Google Scholar 

  71. Akimaru, H., Chen, Y., Dai, P., Hou, D. X., Nonaka, M., Smolik, S. M., Armstrong, S., Goodman, R. H., and Ishii, S. (1997) Drosophila CBP is a co-activator of cubitus interruptus in hedgehog signalling. Nature 386, 735–738.

    PubMed  CAS  Google Scholar 

  72. Von Ohlen, T. and Hooper, J. E. (1997). Hedgehog signaling regulates transcription through Gli/Ci binding sites in the wingless enhancer. Mech. Dev. 68, 149–156.

    Google Scholar 

  73. O'Keefe, L., Dougan, S. T., Gabay, L., Raz, E., Shilo, B. Z., and DiNardo, S. (1997) Spitz and Wingless, emanating from distinct borders, cooperate to establish cell fate across the Engrailed domain in the Drosophila epidermis. Development 124, 4837–4845.

    PubMed  Google Scholar 

  74. van de Wetering, M., Cavallo, R., Dooijes, D., van Beest, M., van Es, J., Loureiro, J., Ypma, A., Hursh, D., Jones, T., Bejsovec, A., Peifer, M., Mortin, M., and Clevers, H. (1997). Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 88, 789–799.

    PubMed  Google Scholar 

  75. Cavallo, R. A., Cox, R. T., Moline, M. M., Roose, J., Polevoy, G. A., Clevers, H., Peifer, M., Cohen, B., Simcox, A. A., and Cohen, S. M. (1993). Allocation of the thoracic imaginal primordia in the Drosophila embryo Develop. 117, 597–608.

    Google Scholar 

  76. Waltzer, L. and Bienz, M. (1998). Drosophila CBP represses the transcription factor TCF to antagonize Wingless signalling. Nature 395, 521–525.

    PubMed  CAS  Google Scholar 

  77. Chen, C. H., von Kessler, D. P., Park, W., Wang, B., Ma, Y., and Beachy, P. A. (1999). Nuclear trafficking of Cubitus interruptus in the transcriptional regulation of Hedgehog target gene expression. Cell 98, 305–316.

    PubMed  CAS  Google Scholar 

  78. Mannervik, M., Nibu, Y., Zhang, H., and Levine, M. (1999) Transcriptional coregulators in development. Science 284, 606–609.

    PubMed  CAS  Google Scholar 

  79. Dougan, S. and DiNardo, S. (1992) Drosophila wingless generates cell type diversity among engrailed expressing cells. Nature 360, 347–350.

    PubMed  CAS  Google Scholar 

  80. Szuts, D., Freeman, M., and Bienz, M. (1997). Antagonism between EGFR and Wingless signalling in the larval cuticle of Drosophila. Development 124, 3209–3219.

    PubMed  CAS  Google Scholar 

  81. Payre, F., Vincent, A., and Carreno, S. (1999). ovo/svb integrates Wingless and Der pathways to control epidermis differentiation. Nature 400, 271–275.

    PubMed  CAS  Google Scholar 

  82. Sanson, B., Alexandre, C., Fascetti, N., and Vincent, J. P. (1999) Engrailed and hedgehog make the range of Wingless asymmetric in Drosophila embryos. Cell 98, 207–216.

    PubMed  CAS  Google Scholar 

  83. St. Johnston, R. D. and Gelbart, W. M. (1987). Decapentaplegic transcripts are localized along the dorsal-ventral axis of the Drosophila embryo. Embo J. 6, 2785–2791.

    PubMed  CAS  Google Scholar 

  84. Ip, Y. T., Park, R. E., Kosman, D., Bier, E., and Levine, M. (1992). The dorsal gradient morphogen regulates stripes of rhomboid expression in the presumptive neuroectoderm of the Drosophila embryo. Genes Dev. 6, 1728–1739.

    PubMed  CAS  Google Scholar 

  85. Kirov, N., Childs, S.M.O.C., and Rushlow, C. (1994). The Drosophila dorsal morphogen represses the tolloid gene by interacting with a silencer element. Mol. Cell Biol. 14, 713–722.

    PubMed  CAS  Google Scholar 

  86. Huang, J. D., Dubnicoff, T., Liaw, G. J., Bai, Y., Valentine, S. A., Shirokawa, J. M., Lengyel, J. A., and Courey, A. J. (1995). Binding sites for transcription factor NTF-1/Elf-1 contribute to the ventral repression of decapentaplegic. Genes Dev. 9, 3177–3189.

    PubMed  CAS  Google Scholar 

  87. Akimaru, H., Hou, D. X., and Ishii, S. (1997) Drosophila CBP is required for dorsal-dependent twist gene expression. Nat. Genet. 17, 211–214.

    PubMed  CAS  Google Scholar 

  88. Dubnicoff, T., Valentine, S. A., Chen, G., Shi, T., Lengyel, J. A., Paroush, Z., and Courey, A. J. (1997). Conversion of dorsal from an activator to a repressor by the global corepressor Groucho. Genes Dev. 11, 2952–2957.

    PubMed  CAS  Google Scholar 

  89. Valentine, S. A., Chen, G., Shandala, T., Fernandez, J., Mische, S., Saint, R., and Courey, A. J. (1998) Dorsal-mediated repression requires the formation of a multiprotein repression complex at the ventral silencer. Mol. Cell. Biol. 18, 6584–6594.

    PubMed  CAS  Google Scholar 

  90. Nambu, J. R., Franks, R. G., Hu, S., and Crews, S. T. (1990). The single-minded gene of Drosophila is required for the expression of genes important for the development of CNS midline cells. Cell 63, 63–75.

    PubMed  CAS  Google Scholar 

  91. Muralidhar, M. G., Callahan, C. A., and Thomas, J. B. (1993) Single-minded regulation of genes in the embryonic midline of the Drosophila central nervous system. Mech. Dev. 41, 129–138.

    PubMed  CAS  Google Scholar 

  92. Schwyter, D. H., Huang, J. D., Dubnicoff, T., and Courey, A. J. (1995). The decapentaplegic core promoter region plays an integral role in the spatial control of transcription. Mol. Cell Biol. 15, 3960–3968

    PubMed  CAS  Google Scholar 

  93. Biehs, B., Francois, V., and Bier, E. (1996) The Drosophila short gastrulation gene prevents Dpp from autoactivating and suppressing neurogenesis in the neuroectoderm. Genes Dev. 10, 2922–2934.

    PubMed  CAS  Google Scholar 

  94. Golembo, M., Raz, E., and Shilo, B. Z. (1996). The Drosophila embryonic midline is the site of Spitz processing, and induces activation of the EGF receptor in the ventral ectoderm. Development 122, 3363–3370.

    PubMed  CAS  Google Scholar 

  95. Gabay, L., Seger, R., and Shilo, B. Z. (1997a) In situ activation pattern of Drosophila EGF receptor pathway during development, Science 277, 1103–1106.

    PubMed  CAS  Google Scholar 

  96. Marques, G., Musacchio, M., Shimell, M. J., Wunnenberg-Stapleton, K., Cho, K. W., and Mb, O. C. (1997) Production of a DPP activity gradient in the early Drosophila embryo through the opposing actions of the SOG and TLD proteins. Cell, 91, 417–426.

    PubMed  CAS  Google Scholar 

  97. Frank, L. H. and Rushlow, C. (1996) A group of genes required for maintenance of the amnioserosa tissue in Drosophila. Development 122, 1343–1352.

    PubMed  CAS  Google Scholar 

  98. Costa, M., Wilson, E. T., and Wieschaus, E. (1994). A putative cell signal encoded by the folded gastrulation gene coordinates cell shape changes during Drosophila gastrulation. Cell 76, 1075–1089.

    PubMed  CAS  Google Scholar 

  99. Reuter, R. and Leptin, M. (1994). Interacting functions of snail, twist and huckebein during the early development of germ layers in Drosophila. Development 120, 1137–1150.

    PubMed  CAS  Google Scholar 

  100. Rehorn, K. P., Thelen, H., Michelson, A. M., and Reuter, R. (1996). A molecular aspect of hematopoiesis and endoderm development common to vertebrates and Drosophila. Development 122, 4023–4031.

    PubMed  CAS  Google Scholar 

  101. Vincent, A., Blankenship, J. T., and Wieschaus, E. (1997). Integration of the head and trunk segmentation systems controls cephalic furrow formation in Drosophila. Development 124, 3747–3754.

    PubMed  CAS  Google Scholar 

  102. Nambu, J. R., Lewis, J. O., Wharton, K. A., Jr., and Crews, S. T. (1991). The Drosophila single-minded gene encodes a helix-loop-helix protein that acts as a master regulator of CNS midline development. Cell 67, 1157–1167.

    PubMed  CAS  Google Scholar 

  103. Klambt, C. (1993) The Drosophila gene pointed encodes two ETS-like proteins which are involved in the development of the midline glial cells. Development 117, 163–176.

    PubMed  CAS  Google Scholar 

  104. Schweitzer, R., Howes, R., Smith, R., Shilo, B. Z., and Freeman, M. (1995a). Inhibition of Drosophila EGF receptor activation by the secreted protein Argos. Nature 376, 699–702.

    PubMed  CAS  Google Scholar 

  105. Schweitzer, R., Shaharabany, M., Seger, R., and Shilo, B. Z. (1995b)., Secreted Spitz triggers the DER signaling pathway and is a limiting component in embryonic ventral ectoderm determination. Genes Dev. 9, 1518–1529.

    PubMed  CAS  Google Scholar 

  106. Gabay, L., Scholz, H., Golembo, M., Klaes, A., Shilo, B. Z., and Klambt, C. (1996) EGF receptor signaling induces pointed P1 transcription and inactivates Yan protein in the Drosophila embryonic ventral ectoderm. Development 122, 3355–3362

    PubMed  CAS  Google Scholar 

  107. Golembo, M., Schweitzer, R., Freeman, M., and Shilo, B. Z. (1996). Argos transcription is induced by the Drosophila EGF receptor pathway to form an inhibitory feedback loop. Development 122, 223–230.

    PubMed  CAS  Google Scholar 

  108. Schnepp, B., Donaldson, T., Grumbling, G., Ostrowski, S., Schweitzer, R., Shilo, B. Z., and Schröder, C., Tautz, D., Seifert, E., and Jäckle, H. (1988). Differential regulation of the two transcripts from the Drosophila gap segmentation gene hunchback. EMBO J. 7, 2881–2887.

    Google Scholar 

  109. Skeath, J. B. (1999). At the nexus between pattern formation and cell-type specification: the generation of individual neuroblast fates in the drosophila embryonic central nervous system. Bioessays 21, 922–931.

    PubMed  CAS  Google Scholar 

  110. Williams, J. A. and Carroll, S. B. (1993). The origin, patterning, and evolution of insect appendages. BioEssays 15, 567–577.

    Google Scholar 

  111. Wolpert, L. (1989). Positional information revisited. Develop. 107, (Suppl.), 3–12.

    Google Scholar 

  112. Gurdon, J. B., Mitchell, A., and Mahoney, D. (1995). Direct and continuous assessment by cells of their position in a morphogen gradient. Nature 376, 520–521.

    PubMed  CAS  Google Scholar 

  113. Neumann, C. and Cohen, S. (1997). Morphogens and pattern formation. Bioessays 19, 721–729.

    PubMed  CAS  Google Scholar 

  114. De Pomerai, D. (1986). From Gene to Animal. Cambridge: Cambridge University Press.

    Google Scholar 

  115. Ingham, P. (1994). Dorsal developments. Nat. 372, 500–501.

    CAS  Google Scholar 

  116. Irish, V., Lehmann R., and Akam, M. (1989). The Drosophila posterior-group gene nanos functions by repressing hunchback activity. Nature 338, 646–648.

    PubMed  CAS  Google Scholar 

  117. Hulskamp, M., Schroder, C., Pfeifle, C., Jackle, H., and Tautz, D. (1989) Posterior segmentation of the Drosophila embryo in the absence of a maternal posterior organizer gene. Nature 338, 629–632.

    PubMed  CAS  Google Scholar 

  118. Pignoni, F., Steingrimsson, E., and Lengyel, J. A. (1992). bicoid and the terminal system activate tailless expression in the early Drosophila embryo. Develop. 115, 239–251.

    CAS  Google Scholar 

  119. Lewis, E. B. (1978). A gene complex controlling segmentation in Drosophila. Nature 276, 565–570

    PubMed  CAS  Google Scholar 

  120. Garcia-Bellido, A. (1977). Homeotic and atavic mutations in insects. Amer. Zool. 17, 613–629.

    Google Scholar 

  121. Kauffman, S. A. (1981). Pattern formation in the Drosophila embryo. Phil. Trans. R. Soc. Lond. 295, 567–594.

    CAS  Google Scholar 

  122. Bodnar, J. W., and Bradley, M. K. (1996). A chromatin switch. J. Theor. Biol. 183, 1–7.

    PubMed  CAS  Google Scholar 

  123. Bodnar, J. W. (1988). A domain model for eukaryotic DNA organization: a molecular basis for cell differentiation and chromosome evolution. J. Theor. Biol. 132, 479–507.

    PubMed  CAS  Google Scholar 

  124. Bodnar, J. W., Killian, J., Nagle, M., and Ramchandani, S. (1997) Deciphering the language of the genome. J. Theor. Biol. 189, 183–193.

    PubMed  CAS  Google Scholar 

  125. Schröder, C., Tautz, D., Seifert, E., and Jackle, H. (1988) Differential regulation of the transcripts from the Drosophila gap segmentation gene hunchback. Embo. J. 7, 288–2887.

    Google Scholar 

  126. Riley, P. D., Carroll, S. B., and Scott, M. P. (1987). The expression and regulation of Sex combs reduced protein in Drosophila embryos. Genes Dev. 1, 716–730.

    PubMed  CAS  Google Scholar 

  127. Akam, M., Dawson, I., and Tear, G. (1988) Homeotic genes and the control of segment diversity. Development 104, 123–133.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Bodnar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bodnar, J.W., Bradley, M.K. Programming the Drosophila embryo 2. Cell Biochem Biophys 34, 153–190 (2001). https://doi.org/10.1385/CBB:34:2:153

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:34:2:153

Keywords

Navigation