Skip to main content
Log in

Concentrations of copper, iron, and zinc in the major organs of the wistar albino and wild black rats

A comparative study

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The concentrations of copper, iron, and zinc in the major organs of Wistar albino (Rattus norvegicus) and wild black rats (Rattus rattus) were measured by means of atomic absorption spectroscopy. The copper levels in the kidneys and liver of the Wistar albino rats (WARs) were significantly higher (p<0.05) than in the wild black rats (WBRs). There were no significant differences in the concentrations of zinc in the liver, lungs, kidneys, and brain between the two study groups, but zinc was significantly higher in the spleen (p<0.05) and lower in the heart (p<0.05) of WAR, compared to WBRs. Iron was significantly higher (p<0.05) in the heart and spleen of WBRs, compared to WARs.

There were no extreme differences in the organ concentrations of trace elements between the two species, but, cumulatively, the WARs tend to have higher metallic concentrations in their system than the WBRs. The potential of these differences on the experimental results should not be overlooked and will serve as basis to further consider the complex interrelationships of these animals in their microenvironments and macroenvironments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C.-K. Hsu, Genetic monitoring, in Laboratory Animal Medicine, J. G. Fox, B. J. Bennett, and F. M. Loew, eds., Academic, San Diego, CA, pp. 603–665 (1984).

    Google Scholar 

  2. K. M. Hambidge, The role of zinc and other trace metals in pediatric nutrition and health, Clin. North Am. 24, 95–106 (1977).

    CAS  Google Scholar 

  3. R. S. Gibson, W. I. Bettger, and J. A Randal-Simpson, Metal ion and growth, in A Handbook of Metal-Ligand Interaction in Biological Fluids, G. Berthon, ed., Marcel Dekker, New York, Vol. 1, pp. 153–160 (1995).

    Google Scholar 

  4. D. A. Phipps, Metal in physiology, role, action and mechanism, in A Handbook of Metal-Ligand Interaction in Biological Fluids, G. Berthon, ed., Marcel Dekker, New York, Vol. 1, pp. 89–106 (1995).

    Google Scholar 

  5. J. R. Prohaska, Biochemical function of copper in animals, in Essential and Toxic Trace Elements in Human Health and Disease, A. S. Prasad. Alan R. Liss, New York, pp. 105–124 (1988).

    Google Scholar 

  6. B. S. Kumari and R. K. Chandra. Overnutrition and immune responses, Nutr. Res. 13, S3-S18 (1993).

    Article  Google Scholar 

  7. V. I. Georgievskij, R. N. Annenkov, and V. T. Samochin. Mineralna Vyzira Zvierat, Priroda, Bratislava, Slovakia (1982).

    Google Scholar 

  8. A. Kopczewski, M. Wroblewska, and T. Zdunkiewicz, Okreslenie Xawartosci pesticydow polichlorowych, polichlrowanyeh dwuflenyli oraz metali: olowiu, kadmu, mieze i cynku w tkankach norek, lisow i tchorzofretek. Przeglad nankowej literatury zootechnicznej, 35, pp. 218–223 (1990).

    Google Scholar 

  9. K. Suvegova, D. Mertin, E. Sviatko, et al., Content of some mineral elements in chosen organs of silver foxes (Vulper vulper). Scientifur 17(4), 257–262 (1993).

    Google Scholar 

  10. Z. Bialkowski and L. Saba, Investigations over the relationship between occurences of mineral elements in blood serum and hair of black silver foxes, Scientifur 9(1), 21–33 (1985).

    Google Scholar 

  11. L. Saba, Z. Dialkowski, S. Wojcik, et al., Content of mineral elements in the hair of blacksilver foxes, Scientifur, 4, 8–11 (1972).

    Google Scholar 

  12. B. M. Marriott, J. C. Smith, Jr., R. M. Jacobs, et al., Copper, iron, manganese and zinc content of hair from two populations of rhesus monkeys, Biol. Trace Element Res. 53, 167–183 (1996).

    CAS  Google Scholar 

  13. T. W. Clark and J. W. Huckabee, Elemental hair analysis of Japanese macaques transplanted to the United States, Primates 18(2), 299–303 (1997).

    Article  Google Scholar 

  14. G. V. Iyengar, Milestones in biological trace elements research, Sci. Total Environ. 100, 11–15 (1991).

    Article  Google Scholar 

  15. G. V. Iyengar, Reference values for the concentration of As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Pb, Se and Zn in selected human tissues and body fluids, Biol. Trace Elements Res. 12, 263–295 (1987).

    CAS  Google Scholar 

  16. J. Bassett, R. C. Henney, G. H. Jeffery, and J. Mendham, eds. Vogel’s Textbook of Quantitative Chemical Analysis, 4th, Longman, London, p. 112 (1978).

    Google Scholar 

  17. D. B. Milne, Trace elements, in Tietz Fundamentals of Clinical Chemistry, 4th ed., J. E. Aldrich, ed., WB Sauders, Philadelphia, pp. 485–496 (1999).

    Google Scholar 

  18. R. A. Goyer, Toxic effects of metals, in Cassarett’s and Doull’s Toxicology, M. O. Amdur, J. Doull, and C. D. Klaassen, eds., Pergamon, Elmsford, NY, pp. 623–677 (1991).

    Google Scholar 

  19. F. K. Ennever, Metals, in Principles of Toxicology, 3rd ed., A. W. Hayes, ed., Raven, New York, pp. 417–446 (1994).

    Google Scholar 

  20. nA. Jacobs, Iron overload—clinical and pathological aspects, Semin. Hematol. 14, 89–113 (1977).

    PubMed  CAS  Google Scholar 

  21. A. S. Prasad, A. Miale, Jr, Z. Farid, et al., Biochemical studies in dwarfism, hypogonadism and anemia, Arch. Intern. Med. 111, 407–428 (1963).

    PubMed  CAS  Google Scholar 

  22. E. J. Underwood, Trace Element in Human and Animal Nutrition, 4th ed., Academic, New York (1977).

    Google Scholar 

  23. R. L. Bertholf, Zinc, in Handbook on toxicity of Inorganic Compounds, H. G. Seiler and H. Sigel, eds., Marcel Dekker, New York, pp. 787–800 (1988).

    Google Scholar 

  24. A. S. Prasad, Human zinc deficiency, in Biological Aspects of Metals and Metal Related Diseases, B. Sarkar, ed., Raven, New York, pp. 107–119 (1983).

    Google Scholar 

  25. National Research Council, Recommended Dietary Allowances, 10th ed., National Academy Press, Washington, DC (1989).

    Google Scholar 

  26. B. Sarkar, J. P. Laussac, and S. Lau, Transport forms of copper in human serum, in B. Sarkar, ed., Biological Aspects of Metals and Metals-Related Diseases, Raven, New York, pp. 23–40 (1983).

    Google Scholar 

  27. B. Halliwell, Reactive oxygen species in living systems: sources, biochemistry and role in human disease, Am. J. Med. 91(Suppl.3C), 3C-14S–3C-22S (1991).

    Google Scholar 

  28. N. Batras, B. Nehru, and M. P. Bansal, The effect of zinc supplementation on the effects of lead on the rat testes, Reprod. Toxicol. 12(5), 535–540 (1998).

    Article  Google Scholar 

  29. R. A. Goyer, J. Apgar, and M. Piscator, Toxicity of zinc, in Zinc., R. I. Henkin and committee, eds., University Park Press, Baltimore, pp. 249–268 (1979).

    Google Scholar 

  30. M. C. Rodrigues-Matas, F. Lisbona, A. E. Gomez-Ayala, et al., Influence of nutritional iron deficiency development in some aspects of iron, copper and zinc metabolism, Lab. Anim. 32(3), 298–306 (1998).

    Article  Google Scholar 

  31. R. R. Lauwerys, Metal—epidemiological and experimental evidence for carcinogenicity, Arch. Toxicol. 13(Suppl.), 21–27 (1989).

    CAS  Google Scholar 

  32. M. F. Khan, X. Wu, N. W. Alcock, et al., Iron excerbates aniline associated splenic toxicity, J. Toxicol. Environ. Health 57(3), 173–184 (1999).

    Article  CAS  Google Scholar 

  33. A. S. Rahman, M. Kimura, K. Tokoi, et al., Iron, zinc and copper levels in different tissues of clinically vit A deficient rats, Biol. Trace Element Res. 49(1), 75–84 (1995).

    CAS  Google Scholar 

  34. A. S. Rahman, M. Kimura, and Y. Itokawa, Testicular atrophy, zinc concentration and angiotensin-activity enzyme activity in the testes of vit A deficient rats, Biol. Trace Element Res. 67(1), 29–36 (1999).

    CAS  Google Scholar 

  35. M.J.L Clapp, The effect of diet on some parameters measured in toxicological studies in the rat, Lab. Anim. 14, 253–261 (1980).

    PubMed  CAS  Google Scholar 

  36. D. L. Greenman, W. L. Oller, N. A. Littlefield, et al., Commercial laboratory animal diets: toxicant and nutrients variability, J. Toxicol. Environ. Health 6, 235–246 (1980).

    Article  PubMed  CAS  Google Scholar 

  37. P. M. Newberne and J. G. Fox, Nutrional adequacy and quality control of rodent diets, Lab. Anim. Sci. 30(2), 352–365 (1980).

    PubMed  CAS  Google Scholar 

  38. A. Wise and D. J. Gilburt, The variability of dietary fibre in laboratory animal diets and its relevance to the control of experimental conditions, Cosmet. Toxicol. 18, 643–648 (1980).

    Article  CAS  Google Scholar 

  39. A. Wise and D. J. Gilburt, Variation of animals and trace elements in laboratory animals diets, Lab. Anim. 15, 299–303 (1981).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olusola, A.O., Obodozie, O.O., Nssien, M. et al. Concentrations of copper, iron, and zinc in the major organs of the wistar albino and wild black rats. Biol Trace Elem Res 98, 265–273 (2004). https://doi.org/10.1385/BTER:98:3:265

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:98:3:265

Index Entries

Navigation