Skip to main content
Log in

Systemic markers of the redox balance and apolipoprotein E polymorphism in atherosclerosis

The relevance for an integrated study

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Prospective studies have demonstrated that an imbalance between oxidative damage and antioxidative protection can play a role in the development and progression of atherosclerosis. Also, genotypes with the apolipoprotein E ζ4 allele have been associated with an increase risk for this pathology. Based on this knowledge, the aim of this study was to evaluate indicators of the redox balance, trace elements, and apolipoprotein E allelic profile in subjects from the Lisbon population with clinically stable atherosclerosis, at risk for atherosclerotic events, and in healthy subjects for comparison. The activities of superoxide dismutase in erythrocytes and glutathione peroxidase in whole blood, plasma total thiols, and serum ceruloplasmin were kept unchanged among the three groups. Serum α-tocopherol was increased in atherosclerotic patients. Total malondialdehyde in serum and protein carbonyls in plasma, which are indicators of lipid and protein oxidative damage, respectively, reached their highest values in risk subjects. The concentrations of potassium and calcium, in plasma and in blood cells, were slightly elevated in patients and might reflect an electrolytic imbalance. Regarding the apolipoprotein E polymorphism, atherosclerotic patients had an increased incidence of the high-risk genotypes for atherogenesis (ζ3/ζ4 and ζ4/ζ4). A multivariate model applied to the general population using most of the parameters clearly separated the three groups at study (i.e., the healthy group from the steady-state group of risk disease and from the atherosclerotic one). As shown by us, the usefulness of biochemical and complementary genetic markers is warranted for a better knowledge on atherosclerosis molecular basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Frei, On the role of vitamin C and other antioxidants in atherogenesis and vascular dysfunctions, Proc. Soc. Exp. Biol. Med. 222, 196–204 (1999).

    Article  PubMed  CAS  Google Scholar 

  2. J. W. Heinecke, Clinical trials of vitamin E in coronary artery disease: is it time to reconsider the low density oxidation hypothesis?, Curr. Atherosclerosis Rep. 5, 83–87 (2003).

    Google Scholar 

  3. B. Hennig, M. Toborek, and C. J. McClain, High-energy diets, fatty acids and endothelial cell function: implications for atherosclerosis, J. Am. Coll. Nutr. 20(2), 97–105 (2001).

    PubMed  CAS  Google Scholar 

  4. P. Fabbi, G. Ghigliotti, C. Brunelli, et al., Intense lipid peroxidation in premature clinical coronary atherosclerosis is associated with metabolic abnormalities, J. Lab. Clin. Med. 143, 99–105 (2004).

    Article  PubMed  CAS  Google Scholar 

  5. A. Munteanu, J.-M. Zingg, and A. Azzi, Anti-atherosclerotic effects of vitamin E: myth or reality?, J. Cell Mol. Med. 8(1), 59–76 (2004).

    PubMed  CAS  Google Scholar 

  6. J. E. Eichner, S. T. Dunn, G. Perveen, D. M. Thompson, K. E. Stewart, and B. C. Stroehla, Apolipoprotein E polymorphism and cardiovascular disease: a huge review, Am. J. Epidemiol. 155(6), 487–495 (2002).

    Article  PubMed  Google Scholar 

  7. S. Bhakdi, An hypothesis for the immunopathogenesis of atherosclerosis, Clin. Nephrol. 60, S49-S52 (2003).

    PubMed  CAS  Google Scholar 

  8. R. W. Mahley, T. L. Innerarity, S. C. Rall, Jr., and K. H. Weisgraber, Plasma lipoproteins: apolipoprotein structure and function, J. Lipid Res. 25, 1277–1294 (1984).

    PubMed  CAS  Google Scholar 

  9. R. W. Mahley, Apolipoprotein E: cholesterol transport protein with expanding role in cell biology, Science 240, 622–630 (1988).

    Article  PubMed  CAS  Google Scholar 

  10. L. P. L. Van de Vijver, A. F. M. Kardinnal, D. E. Grobbee, H. M. G. Prince, and G. Van Poppel, Lipoprotein oxidation, antioxidants and cardiovascular risk: epidemiologic evidence, Prostaglandins Leukotrienes Essential Fatty Acids 57, 479–487 (1997).

    Article  Google Scholar 

  11. I. Durak, M. Kaçmaz, M. Y. B. Çimen, Ü. Büyükkoçak, and H. S. Öztürk, Blood oxidant/antioxidant status of atherosclerotic patients, Int. J. Cardiol. 77, 293–297 (2001).

    Article  PubMed  CAS  Google Scholar 

  12. M. Feki, M. Souissi, E. Mokhatar, et al., Vitamin E and coronary heart disease in Tunisians, Clin. Chem. 46(9), 1401–1405 (2000).

    PubMed  CAS  Google Scholar 

  13. S. R. Thomas and R. Stocker, Molecular action of vitamin E in lipoprotein oxidation: implications for atherosclerosis, Free Radical Biol. Med. 28(12), 1795–1805 (2000).

    Article  CAS  Google Scholar 

  14. S. Ylä-Herttuala LDL oxidation and atherogenesis, in Natural Antioxidants and Food Quality in Atherosclerosis and Cancer Prevention, J. T. Kumpulainen and J. T. Salonen, eds., The Royal Society of Chemistry, Cambridge, pp. 7–9 (1996).

    Google Scholar 

  15. B. P. Yu, Cellular defenses against damage from reactive oxygen species, Physiol. Rev. 74, 139–162 (1994).

    PubMed  CAS  Google Scholar 

  16. A. J. C. Slooter, M. L. Bots, L. M. Havekes, et al., Apolipoprotein E and carotid artery atherosclerosis: the Rotterdam study, Stroke 32, 1947–1952 (2001).

    PubMed  CAS  Google Scholar 

  17. M. H. Shishehbor and S. L. Hazen, Inflammatory and oxidative markers in atherosclerosis: relationship to outcome, Curr. Atherosclerosis Rep. 6, 243–250 (2004).

    Google Scholar 

  18. Expert Panel on the Identification, Evaluation, and Treatment of Overweight in Adults. Clinical guidelines on the identification, evaluation and treatment of overweight and obesity in adults: executive summary, Am. J. Clin. Nutr. 68, 899–917 (1998).

    Google Scholar 

  19. A.-C. Santos and H. Barros, Prevalence and determinants of obesity in an urban sample of Portuguese adults, Public Health 117, 430–437 (2003)

    Article  PubMed  Google Scholar 

  20. F. C. Ballantyne, R. S. Clarck, H. S. Simpson, and D. Ballantyne, HDL and LDL subfractions in myocardial infarction in control subjects, Metabolism 31, 433–437 (1982).

    Article  PubMed  CAS  Google Scholar 

  21. W. T. Friedewald, R. I. Levy, and D. S. Fredrickson, Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge, Clin. Chem. 18(6), 499–502 (1972).

    PubMed  CAS  Google Scholar 

  22. Expert Panel on detection, Evaluation, and Treatment of High Blood Cholesterol in Cholesterol in Adults. Executive summary of the third report of the National Cholesterol education program (NCEP) expert panel on detection, evaluation and treatment of high blood cholesterol in adults (adult treatment panel III), JAMA 285, 2486–2497 (2001).

    Article  Google Scholar 

  23. J. Sedlak and R. H. Lindsay, Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent, Anal. Biochem. 25, 192–205 (1968).

    Article  PubMed  CAS  Google Scholar 

  24. T. Julianto, K. H. Yuen, and M. Noor, Simple HPLC method for determination of α-tocopherol in human plasma, J. Chromatogr. B. 732(1), 227–231 (1999).

    CAS  Google Scholar 

  25. J. P. Steghens, A. L. Van Kappel, I. Denis, and C. Collombel, Diaminonaphtalene, a new highly specific reagent for HPLC-UV measurement of total and free malondialdehyde in human plasma or serum, Free Radical Biol. Med. 31(2), 242–249 (2001).

    Article  CAS  Google Scholar 

  26. G. Peiro, J. Alary, J. P. Cravedi, E. Rathahao, J. P. Steghens, and F. Guéraud, Dihydroxynonene mercapturic acid, a urinary metabolite of 4-hydroxynonenal, as a biomarker of lipid peroxidation, Biofactors 24(1–4), 89–96 (2005).

    PubMed  CAS  Google Scholar 

  27. R. D. Levine, D. Garland, C. N. Oliver, et al., Determination of carbonyl content in oxidatively modified proteins, Methods Enzymol. 186, 464–478 (1990).

    Article  PubMed  CAS  Google Scholar 

  28. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and A. R. Randall, Protein measurement with the Folin phenol reagent, J. Biol. Chem. 193, 265–275 (1951).

    PubMed  CAS  Google Scholar 

  29. M. A. Barreiros, T. Pinheiro, M. F. Araújo, M. M. Costa, M. Palha, and R. C. Silva, Quality assurance of X-ray spectrometry for chemical analysis, Spectrochim. Acta B 56(11), 2095–2106 (2001).

    Article  Google Scholar 

  30. J. Versieck, L. Van Ballenberghe, A. De Kesel, et al., Certification of a second-generation biological reference material (freeze-dried human serum) for trace element determinations, Anal. Chim. Acta 204, 63–75 (1998).

    Article  Google Scholar 

  31. S. A. Miller, D. D. Dykes, and H. F. Polesky, A simple salting out procedure for extracting DNA from human nucleated cells, Nucleic Acids Res. 16, 1215 (1988).

    Article  PubMed  CAS  Google Scholar 

  32. J. E. Hixton and D. T. Vernier, Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with Hha I, J. Lipid Res. 31, 545–548 (1990).

    Google Scholar 

  33. P. Richard, G. Thomas, M. P. Zulueta, et al., Common and rare genotypes of human apolipoprotein E determined by specific restriction profiles of polymerase chain reaction-amplified DNA, Clin. Chem. 40(1), 24–29 (1994).

    PubMed  CAS  Google Scholar 

  34. J. H. Zar, Biostatistical Analysis, 3rd ed., Prentice-Hall International, London (1996).

    Google Scholar 

  35. B. G. Tabachnick and L. S. Fidell, Using Multivariate Statistics, Harper Collins College, New York (1996).

    Google Scholar 

  36. S. W. Guo and E. A. Thompson, Performing the exact test of Hardy-Weinberg proportion for multiple alleles, Biometrics 48, 361–372 (1992).

    Article  PubMed  CAS  Google Scholar 

  37. L. Braeckman, D. De Bacquer, M. Rosseneu, and G. De Backer, Apolipoprotein E polymorphism in middle-aged Belgian men: phenotype distribution and relation to serum lipids and lipoproteins, Atherosclerosis 120, 67–73 (1996).

    Article  PubMed  CAS  Google Scholar 

  38. H. S. Pedersen, G. Mulvad, W. P. Newman, and D. A. Boudreau, Atherosclerosis in coronary arteries and aorta among Greenlanders: an autopsy study, Atherosclerosis 170, 93–103 (2003).

    Article  PubMed  CAS  Google Scholar 

  39. D. Yucel, S. Aydogdu, S. Cehreli, et al., Increased oxidative stress in dilated cardiomyopathic heart failure, Clin. Chem. 44, 148–154 (1998).

    PubMed  CAS  Google Scholar 

  40. T. Fukai, R. J. Folz, U. Landmesser, and D. G. Harrison, Extracellular superoxide dismutase and cardiovascular disease, Cardiovasc. Res. 55, 239–249 (2002).

    Article  PubMed  CAS  Google Scholar 

  41. J. M. C. Gutteridge, Lipid peroxidation and antioxidants as biomarkers of tissue damage, Clin. Chem. 41(12 Pt. 2), 1819–1828 (1995).

    PubMed  CAS  Google Scholar 

  42. M. Piorunska-Stolzmann, M. Iskra, and W. Majewski, The activity of cholesterol esterase and ceruloplasmin are inversely related in the serum of men with atherosclerosis obliterans, Med. Sci. Monit. 7(5), 940–945 (2001).

    PubMed  CAS  Google Scholar 

  43. D. Lapenna, S. de Gioia, G. Ciofani, et al., Glutathione-related antioxidant defenses in human atherosclerotic plaques, Circulation 97, 1930–1934 (1998).

    PubMed  CAS  Google Scholar 

  44. T. Weinbrenner, M. Cladellas, M. I. Covas, et al., and SOLOS Study Investigators, High oxidative stress an aptients with stable coronary heart disease, Atherosclerosis 168, 99–106 (2003).

    Article  PubMed  CAS  Google Scholar 

  45. R. S. Rosenson, Statins in atherosclerosis: lipid-lowering agents with antioxidant capabilities, Atherosclerosis 173, 1–12 (2004).

    Article  PubMed  CAS  Google Scholar 

  46. C. K. Sen and L. Packer, Thiol homeostasis and supplements in physical exercise, Am. J. Clin. Nutr. 72, 653S-669S (2000).

    PubMed  CAS  Google Scholar 

  47. P. Tosukhowong, S. Sangwatanaroj, S. Jatuporn, et al., The correlation between markers of oxidative stress and risk factors of coronary artery disease in Thai patients, Clin. Hemorheol. Microcirc. 29(3–4), 321–329 (2003).

    PubMed  CAS  Google Scholar 

  48. N. K. Özer and A. Azzi, Effect of vitamin E on the development of atherosclerosis, Toxicology 148, 179–185 (2000).

    Article  PubMed  Google Scholar 

  49. R. Brigelius-Flohé, F. J. Kelly, J. T. Salonen, J. Neuzil, J.-M. Zingg, and A. Azzi, The European perspective on vitamin E: current knowledge and future research, Am. J. Clin. Nutr. 76, 703–716 (2002).

    PubMed  Google Scholar 

  50. C. Schneider, Chemistry and biology of vitamin E, Mol. Nutr. Food Res. 49, 7–30 (2005).

    Article  PubMed  CAS  Google Scholar 

  51. P. A. Lopes, M. C. Santos, L. Vicente, and A. M. Viegas-Crespo, Effect of cigarette smoking on serum α-tocopherol and the lipid profile in healthy humans, Clin. Chim. Acta 348(1–2), 49–55 (2004).

    Article  PubMed  CAS  Google Scholar 

  52. K. Miwa, S. Okinaga, and M. Fujita, Low serum α-tocopherol concentrations in subjects with various coronary risk factors, Circ. J. 68, 542–546 (2004).

    Article  PubMed  CAS  Google Scholar 

  53. C. Sánchez-Moreno, J. F. Dashe, T. Scott, D. Thaler, M. F. Folstein, and A. Martin, Decreased levels of plasma vitamin C and increased concentrations of inflammatory and oxidative makers after stroke, Stroke 35, 163–168 (2004).

    Article  PubMed  CAS  Google Scholar 

  54. L. Tamer, N. Sucu, G. Polat, et al., Decreased serum total antioxidant status and erythrocyte-reduced glutathione levels are associated with increased serum malondialdehyde in atherosclerotic patients, Arch. Med. Res. 33(3), 257–260 (2002).

    Article  PubMed  CAS  Google Scholar 

  55. J. Renke, S. Popadiuk, M. Korzon, B. Bugajczyk, and M. Wozniak, Protein carbonyl groups' content as a useful clinical marker of antioxidant barrier impairment in plasma of children with juvenile chronic arthritis, Free Radical Biol. Med. 29(2), 101–104 (2000).

    Article  CAS  Google Scholar 

  56. T. Miyata, R. Inagi, K. Asahi, et al., Generation of Protein carbonyls byglycoxidation and lipoxidation reactions with autoxidation products of ascorbic acid and polyunsaturated fatty acids, FEBS Lett. 437, 24–28 (1998).

    Article  PubMed  CAS  Google Scholar 

  57. P. Mecocci, M. C. Polidori, L. Troiano, et al. Plasma antioxidants and longevity: a study on healthy centenarians, Free Radical Biol. Med. 28(8), 1243–1248 (2000).

    Article  CAS  Google Scholar 

  58. Ü. Mutlu-Türkoglu, E. Ilhan, S. Öztezcan, A. Kuru, G. aykaç-Toker, and M. Uysal, Agerelated increases in plasma malondialdehyde and protein carbonyl levels and lymphocyte DNA damage in elderly subjects, Clin. Biochem. 36, 397–400 (2003).

    Article  PubMed  CAS  Google Scholar 

  59. C. R. W. Kuhlmann, M. Schäfer, F. Li, et al., Modulation of endothelial Ca2+-activated K+ channels by oxidized LDL and its contribution to endothelial production, Cardiovasc. Res. 60, 626–634 (2003).

    Article  PubMed  CAS  Google Scholar 

  60. C. Mazière, P. Morlière, Z. Massy, et al., Oxidized low-density lipoprotein elicits an intracellular calcium rise and increases the binding activity of the transcription factor NFAT, Free Radical Biol. Med. 38, 472–480 (2005).

    Article  CAS  Google Scholar 

  61. P. L. Fox, B. Mazumder, E. Ehrenwald, and C. K. Mukhopadhyay, Ceruloplasmin and cardiovascular disease, Free Radical Biol. Med. 28(12), 1735–1744 (2000).

    Article  CAS  Google Scholar 

  62. L.-Y. Chau, Iron and atherosclerosis, Proc. Natl. Sci. Counc. ROC (B) 24(4), 151–155 (2000).

    CAS  Google Scholar 

  63. M. C. Corti, M. Gaziano, and C. H. Hennekens Iron status and risk of cardiovascular disease, Ann Epidemiol. 7(1), 62–68 (1997).

    Article  PubMed  CAS  Google Scholar 

  64. C. Beaumont, Mécanismes moléculaires de l'homéostasie du fer, Med. Sci. (Paris) 20(1), 68–72 (2004).

    Google Scholar 

  65. K. Klipstein-Grobusch, D. E. Grobbee, J. F. Koster, et al., Serum caeruloplasmin as a coronary risk factor in the elderly: the Rotterdam Study, Br. J. Nutr. 81, 139–144 (1999).

    PubMed  CAS  Google Scholar 

  66. M. Iskra and W. Majewski, Copper and zinc concentrations and the activities of ceruloplasmin and superoxide dismutase in atherosclerosis obliterans, Biol. Trace Element Res. 73(1), 55–65 (2000).

    Article  CAS  Google Scholar 

  67. B. Hennig, P. Meerarani, M. Toborek, and C. J. McClain, Antioxidant-like properties of zinc in activated endothelial cells, J. Am. Coll. Nutr. 18(2), 152–158 (1999).

    PubMed  CAS  Google Scholar 

  68. P. Evans and B. Halliwell, Micronutrients: oxidant/antioxidant status, Br. J. Nutr. 85(Suppl. 2), 67–74 (2001).

    Article  Google Scholar 

  69. G. H. Lyons, G. J. Judson, J. C. R. Stangoulis L. T. Palmer, J. A. Jones, and R. D. Graham, Trends in selenium status of South, Australians Med. J. Aust. 180, 383–386 (2004).

    PubMed  Google Scholar 

  70. P. A. Lopes, M. C. Santos, L. Vicente, et al., Trace element status (Se, Cu, Zn) in healthy Portuguese subjects of Lisbon population: a references study, Biol. Trace Element Res. 101, 1–17 (2004).

    Article  CAS  Google Scholar 

  71. V. Ducros, F. Laporte, N. Belin, A. David, and A. Favier, Selenium determination in human plasma lipoprotein fractions by mass spectrometry analysis, J. Inorg. Biochem. 81(1–2), 105–109 (2000).

    Article  PubMed  CAS  Google Scholar 

  72. J. T. Salonen, G. Alfthan, J. Pikkarainen, J. K. Huttunen, and P. Puska, Association between cardiovascular death and myocardial infarction and serum selenium in a matched-pair longitudinal study, Lancet 52, 175–179 (1982).

    Article  Google Scholar 

  73. J. Nève and Y. Palmieri, First symposium on human health related aspects of selenium research in Europe, J. Trace Elements Med. Biol. 14, 116–121 (2000).

    Article  Google Scholar 

  74. M. R. Kafai and V. Ganji, Sex, age, geographical location, smoking, and alcohol consumption influence serum selenium concentrations in the USA: third National Health and Nutrition Examination Survey, 1988–1994, J. Trace Elements Med. Biol. 17(1), 13–18 (2003).

    Article  Google Scholar 

  75. M. G. Andreassi, Coronary atherosclerosis and somatic mutations: an overview of the contributive factors for oxidative DNA damage, Mutat. Res. 543, 67–86 (2003).

    Article  PubMed  CAS  Google Scholar 

  76. D. A. Boudreau, W. D. Scheer, G. T. Malcom, G. Mulvad, H. S. Pederson, and E. Jul, Apolipoprotein E and atherosclerosis in Greenland Inuit, Atherosclerosis 145, 207–219 (1999).

    Article  PubMed  CAS  Google Scholar 

  77. S. R. Srinivasan, C. Ehnholm, A. Elkasabany, and G. S. Berenson, Apolipoprotein E polymorphism modulates the association between obesity and dyslipidemias during young adulthood: the Bogalusa Heart Study, Metabolism 50(6), 696–702 (2001).

    Article  PubMed  CAS  Google Scholar 

  78. G. M. Novaro, R. Sachar, G. L. Pearce, D. L. Sprecher, and B. P. Griffin, Association between apolipoprotein E alleles and calcific vascular heart disease, Circulation 108, 1804–1808 (2003).

    Article  PubMed  CAS  Google Scholar 

  79. C. Ehnholm, M. Lukka, T. Kuusi, E. Nikkilä, and G. Utermann, Apolipoprotein E polymorphism in the Finnish population: gene frequencies and relation to lipoprotein concentrations, J. Lipid Res. 27, 227–235 (1986).

    PubMed  CAS  Google Scholar 

  80. T. B. Shea, E. Rogers, D. Ashline, D. Ortiz, and M.-S. Sheu, Apolipoprotein E deficiency promotes increased oxidative stress and compensatory increases in antioxidants in brain tissue, Free Radical Biol. Med. 33(8), 1115–1120 (2002).

    Article  CAS  Google Scholar 

  81. J. H. Stengard, K. E. Zerba, J. Pekkanen, C. Ehnholm, A. Nissinen, and C. F. Sing, Apolipoprotein E polymorphism predicts death from coronary heart disease in a longitudinal study of elderly Finnish men, Circulation 91, 265–269 (1995).

    PubMed  CAS  Google Scholar 

  82. J. H. Stengard, J. Pekkanen, C. Ehnholm, A. Nissinen, and C. F. Sing, Genotypes with the apolipoprotein ε4 allele are predictors of coronary heart, disease mortality in a longitudinal study of elderly Finnish men, Hum. Genet. 97, 677–684 (1996).

    Article  PubMed  CAS  Google Scholar 

  83. I. Pirim, F. Polat, E. Akarsu, Y. N. Sahin, and E. Bozkurt, Apolipoprotein-E genotyping in patients with coronary heart disease, Turk. J. Med. Sci. 31, 229–233 (2001).

    CAS  Google Scholar 

  84. M. L. Sentman, T. Brännström, S. Westerlund, et al., Extracellular superoxide dismutase deficiency and atherosclerosis in mice, Arteriosclerosis Thromb. Vasc. Biol. 21, 1477–1482 (2001).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopes, P.A., Napoleão, P., Pinheiro, T. et al. Systemic markers of the redox balance and apolipoprotein E polymorphism in atherosclerosis. Biol Trace Elem Res 112, 57–75 (2006). https://doi.org/10.1385/BTER:112:1:57

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:112:1:57

Index Entries

Navigation