Skip to main content
Log in

Mercuric chloride inhibits the in vitro uptake of glutamate in GLAST- and GLT-1-transfected mutant CHO-K1 cells

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Glutamate is removed mainly by astrocytes from the extracellular fluid via high-affinity astroglial Na+-dependent excitatory amino acid transporters, glutamate/aspartate transporter (GLAST), and glutamate transporter-1 (GLT-1). Mercuric chloride (HgCl2) is a highly toxic compound that inhibits glutamate uptake in astrocytes, resulting in excessive extracellular glutamate accumulation, leading to excitotoxicity and neuronal cell death. The mechanisms associated with the inhibitory effects of HgCl2 on glutamate uptake are unknown. This study examines the effects of HgCl2 on the transport of 3H-d-aspartate, a nonmetabolizable glutamate analog, using Chinese hamster ovary cells (CHO) transfected with two glutamate transporter subtypes, GLAST (EAAT1) and GLT-1 (EAAT2), as a model system. Additionally, studies were undertaken to determine the effects of HgCl2 on mRNA and protein levels of these transporters. The results indicate that (1) HgCl2 leads to significant (p<0.001) inhibition of glutamate uptake via both transporters, but is a more potent inhibitor of glutamate transport via GLAST and (2) the effect of HgCl2 on inhibition of glutamate uptake in transfected CHO cells is not associated with changes in transporter protein levels despite a significant decrease in mRNA expression; thus, (3) HgCl2 inhibition is most likely related to its direct binding to the functional thiol groups of the transporters and interference with their uptake function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Attwell and P. Mobbs, Neurotransmitter transporters, Curr. Opin. Neurobiol. 4, 353–359 (1994).

    Article  PubMed  CAS  Google Scholar 

  2. T. Storck, S. Schulte, K., Hofmann and W. Stoffel, Structure, expression, and functional analysis of a Na(+)-dependent glutamate/aspartate transporter from rat brain, Proc. Natl. Acad. Sci. USA 89, 10,955–10,959 (1992).

    Article  CAS  Google Scholar 

  3. G. Pines, N. C. Danbolt, M. Bjoras, et al., Cloning and expression of a rat brain l-glutamate transporter, Nature 360, 464–467 (1992).

    Article  PubMed  CAS  Google Scholar 

  4. Y. Kanai and M. A. Hediger, Primary structure and functional characterization of a high-affinity glutamate transporter, Nature 360, 467–471 (1992).

    Article  PubMed  CAS  Google Scholar 

  5. W. A. Fairman and S. G. Amara, Punctional diversity of excitatory amino acid transporters: ion channel and transport modes, Am. J. Physiol. 277, F481-F486 (1999).

    PubMed  CAS  Google Scholar 

  6. J. L. Arriza, S. Eliasof, M. P. Kavanaugh, and S. G. Amara, Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc. Natl. Acad. Sci. USA 94, 4155–4160 (1997).

    Article  PubMed  CAS  Google Scholar 

  7. Y. Kanai, Family of neutral and acidic amino acid transporters: molecular biology, physiology and medical implications, Curr. Opin. Cell Biol. 9, 565–572 (1997).

    Article  PubMed  CAS  Google Scholar 

  8. O. Haugeto, K. Ullensvang, L. M. Levy et al., Brain glutamate transporter proteins from homomultimers, J. Biol. Chem. 271, 27,715–27,722 (1996).

    CAS  Google Scholar 

  9. N. C. Danbolt, G. Pines, and B. I. Kanner, Purification and reconstitution of the sodium- and potassium-coupled glutamate transport glycoprotein from rat brain, Biochemistry 29, 6734–6740 (1990).

    Article  PubMed  CAS  Google Scholar 

  10. K. D. Sims and M. B. Robinson, Expression patterns and regulation of glutamate transporters in the developing and adult nervous system, Crit. Rev. Neurobiol. 13, 169–197 (1999).

    PubMed  CAS  Google Scholar 

  11. K. P. Lehre, L. M. Levy, O. P. Ottersen, J. Storm-Mathisen, and N. C. Danbolt, Differential expression of two glial glutamate transporters in the rat brain: Quantitative and immunocytochemical observations, J. Neurosci. 15, 1835–1853 (1995).

    PubMed  CAS  Google Scholar 

  12. J. D. Rothstein, L. Martin, A. I. Levey, et al., Localization of neuronal and glial glutamate transporters, Neuron 13, 713–725 (1994).

    Article  PubMed  CAS  Google Scholar 

  13. R. Torp, D. Lekieffre, L. M. Levy et al., Reduced postischemic expression of a glial glutamate transporter, GLT1 in the rat hippocampus, Exp. Brain Res. 103, 51–58 (1995).

    Article  PubMed  CAS  Google Scholar 

  14. A. E. Fray, P. G. Ince, S. J. Banner, et al., The expression of the glial glutamate transporter protein EAAT2 in motor neuron disease: and immunohistochemical study, Eur. J. Neurosci. 10, 2481–2489 (1998).

    Article  PubMed  CAS  Google Scholar 

  15. S. Sasaki, T. Komori, and M. Iwata, Excitatory amino acid transporter 1 and 2 immunoreactivity in the spinal cord in amyotrophic lateral sclerosis. Acta Neuropath. Berlin 100, 138–144 (2000).

    Article  PubMed  CAS  Google Scholar 

  16. B. Meldrum and J. Garthwaite, Excitatory amino acid neurotoxicity and neurodegenerative disease, Trends Pharmacol. Sci. 11, 379–387 (1990).

    Article  PubMed  CAS  Google Scholar 

  17. M. Aschner, N. B. Eberle, K. Miller, and H. K. Kimelberg, Interactions of methylmercury with rat primary astrocyte cultures: inhibition of rubidium and glutamate uptake and induction of swelling, Brain Res. 530, 245–250 (1990).

    Article  PubMed  CAS  Google Scholar 

  18. N. Brooks and D. A. Kristt, Inhibition of amino acid transport and protein synthesis by HgCl2 and methylmercury in astrocytes: Selectivity and reversibility, J. Neurochem. 53, 1228–1237 (1989).

    Article  Google Scholar 

  19. N. Brooks, In vitro evidence for the role of glutamate in the CNS toxicity of mercury, Toxicology 76, 245–256 (1992).

    Article  Google Scholar 

  20. J. Albrecht, M. Talbot, H. K. Kimelberg, and M. Aschner, M. Aschner, The role of sulfhydryl groups and calcium in the mercuric chloride-induced inhibition of glutamate uptake in rat primary astrocyte cultures. Brain Res. 607, 249–254 (1993).

    Article  PubMed  CAS  Google Scholar 

  21. W. H. Hughes, A physiochemical rationale for the biological activity of mercury and its compounds, Ann. NY Acad. Sci. 65, 454–460 (1957).

    Article  PubMed  CAS  Google Scholar 

  22. R. P. Igo and J. F. Ash, New mutations and phenotypes associated with glutamate and aspartate transport in Chinese Hamster ovary (CHO-K1) cells, Somat. Cell. Mol. Genet. 22, 87–103 (1996).

    Article  PubMed  CAS  Google Scholar 

  23. S. Duan, C. M. Anderson, B. A. Stein, and R. A. Swanson, Glutamate induces rapid upregulation of astrocyte glutamate transport and cell-surface expression of GLAST, J. Neurosci. 19, 10,193–10,200 (1999).

    CAS  Google Scholar 

  24. Y. Qian, A. Galli, S. Ramamoorthy, S., Risso, L. J. DeFelice, and R. D. Blakely, Protein kinase C activation regulates human serotonin transporters in HEK-293 cells via altered cell surface expression, J. Neurosci., 17, 45–57 (1997).

    PubMed  CAS  Google Scholar 

  25. K. E. Davis, D. J. Straff, E. A. Weinstein, et al., Multiple signaling pathways regulate cell surface expression and activity of the excitatory amino acid carrier 1 subtype of Glu transporter in C6 glioma, J. Neurosci. 18, 2475–2485 (1998).

    PubMed  CAS  Google Scholar 

  26. T. W. Clarkson, Metal toxicity in the central nervous system, Environ. Health Perspect. 75, 59–64 (1987).

    PubMed  CAS  Google Scholar 

  27. L. Kwock, Sulfhydryl group involvement in the modulation of neutral amino acid transport in thymocyte membrane vesicles, J. Cell. Physiol. 106, 279–282 (1981).

    Article  PubMed  CAS  Google Scholar 

  28. T. C. Chiles and M. S. Kilberg, System A transport activity in normal rat hepatocytes and transformed liver cells: substrate protection from inactivation by sulfhydryl-modifying reagents, J. Cell. Physiol. 129, 321–328, (1986).

    Article  PubMed  CAS  Google Scholar 

  29. J. L. Webb, Mercurials, in Enzyme and Metabolic Inhibitors, 2, J. L. Webb, ed., Academic, New York, pp. 729–1070 (1966).

    Google Scholar 

  30. V. Petronilli, P. Costantini, L. Scorrano, R. Colonna, S. Passamonti, and P. Bernardi, The voltage sensor of the mitochondrial permeability transition pore is tuned by the oxidation-reduction state of vicinal thiols. Increase of the gating potential by oxidants and its reversal by reducing agents, J. Biol. Chem. 269, 16,638–16,642 (1994).

    CAS  Google Scholar 

  31. Z. H. Pan, R. Bahring, R. Grantyn, and S. A. Lipton, Differential modulation by sulfhydryl redox agents and glutathione of GABA- and glycine-evoked currents in rat retinal ganglion cells, J. Neurosci. 15, 1384–1391 (1995).

    PubMed  CAS  Google Scholar 

  32. R. P. Seal and S. G. Amara, A reentrant loop domain in the glutamate carrier EAAT1 participates in substrate binding and translocation, Neuron 21, 1487–1498 (1998).

    Article  PubMed  CAS  Google Scholar 

  33. M. Grunewald, A. Bendahanm, and B. I. Kanner, Biotinylation of single cysteine mutant of the glutamate transporter GLT-1 from rat brain reveals its unusual topology, Neuron 21, 623–632 (1998).

    Article  PubMed  CAS  Google Scholar 

  34. R. Zarbiv, M. Grunewald, M. P. Kavanaugh, and V. I. Kanner, Cysteine scanning of the surroundings of an alkali-ion binding site of the glutamate transporter GLT-1 reveals a conformationally sensitive residue, J. Biol. Chem. 273, 14,231–14,237 (1998).

    Article  CAS  Google Scholar 

  35. D. Trotti, B. L. Rizzini, D. Rossi, et al. Neuronal and glial glutamate transporters possess and SH-based redox regulatory mechanism, Eur. J. Neurosci. 9, 1236–1243 (1997).

    Article  PubMed  CAS  Google Scholar 

  36. D. Trotti, N. C. Danbolt, and A. Volterra, Glutamate transporters are oxidant-vulnerable: a molecular link between oxidative and excitotoxic neurodegeneration? Trends Pharmacol. Sci. 8, 328–334 (1998).

    Article  Google Scholar 

  37. N. Zerangue and M. P. Kavanaugh Flux coupling in a neuronal glutamate transporter, Nature 383, 634–637 (1996).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mutkus, L., Aschner, J.L., Syversen, T. et al. Mercuric chloride inhibits the in vitro uptake of glutamate in GLAST- and GLT-1-transfected mutant CHO-K1 cells. Biol Trace Elem Res 109, 267–280 (2006). https://doi.org/10.1385/BTER:109:3:267

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:109:3:267

Index Entries

Navigation