Skip to main content
Log in

Hydrothermal pretreatment conditions to enhance ethanol production from poplar biomass

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Pretreatment has been recognized as a key step in enzyme-based conversion processes of lignocellulose biomass to ethanol. The aim of this study is to evaluate two hydrothermal pretreatments (steam explosion and liquid hot water) to enhance ethanol production from poplar (Populus nigra) biomass by a simultaneous saccharification and fermentation (SSF) process. The composition of liquid and solid fractions obtained after pretreatment, enzymatic digestibility, and ethanol production of poplar biomass pretreated at different experimental conditions was analyzed. The best results were obtained in steam explosion pretreatment at 210°C and 4 min, taking into account cellulose recovery above 95%, enzymatic hydrolysis yield of about 60%, SSF yield of 60% of theoretical, and 41% xylose recovery in the liquid fraction. Large particles can be used for poplar biomass in both pretreatments, since no significant effect of particle size on enzymatic hydrolysis and SSF was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. El Bassam, N. (1996), in Renewable Energy: Potential Energy Crops for Europe and the Mediterranean Region, FAO, Rome, Italy, Rev. Technical Series 46, 142–156.

    Google Scholar 

  2. Sun, Y. and Cheng, J. (2002), Bioresour. Technol. 83, 1–11.

    Article  CAS  Google Scholar 

  3. McMillan, J. D. (1994) in Enzymatic Conversion of Biomass for Fuels Production, Himmel, M. E., Baker, J. O., and Overend, R. P., eds., American Chemical Society, Washington, DC, pp. 292–324.

    Google Scholar 

  4. Heitz, M., Capek-Ménard, E., Koeberle, P. G., Gagné, J., and Chornet, E. (1991), Bioresour. Technol. 35, 23–32.

    Article  CAS  Google Scholar 

  5. Mes-Hartree, M. and Saddler, J. N. (1983), Biotechnol. Lett. 5, 531–536.

    Article  CAS  Google Scholar 

  6. Ando, S., Arai, I., Kiyoto, K., and Hanai, S. (1986), J. Ferment. Technol. 64, 567–570.

    Article  CAS  Google Scholar 

  7. Duff, S. J. B. and Murray, W. D. (1996), Bioresour. Technol. 55, 1–33.

    Article  CAS  Google Scholar 

  8. Wright, J. D. (1998), Chem. Eng. Prog. 84, 62–74.

    Google Scholar 

  9. Van Walsum, G. P., Allen, S. G., Spenser, M. J., Laser, M. S., Antal, M. J., and Lynd, L.R. (1996), Appl. Biochem. Biotechnol. 57–58, 157–170.

    Google Scholar 

  10. Weil, J., Sarikaya, A., Rau, S. L., Goetz, J., Ladisch, C. M., Brewer, M., Hendrickson, R., and Ladisch, M. R. (1997), Appl. Biochem. Biotechnol. 68, 21–40.

    CAS  Google Scholar 

  11. Weil, J. P., Sarikaya, A., Rau, S. L., Goetz, J., Ladish, M., Brewer, M., and Hendrickson, R. (1998), Appl. Biochem. Biotechnol. 73, 1–17.

    CAS  Google Scholar 

  12. Mok, W. S.-L. and Antal, M. J. (1992), Ind. Eng. Chem. Res. 31, 1157–1161.

    Article  CAS  Google Scholar 

  13. Laser, M., Schulman D., Allen, S. G., Lichwa J., Antal, M. J., and Lynd, L. R. (2002), Bioresour. Technol. 81, 33–44.

    Article  CAS  Google Scholar 

  14. Allen, S. G., Schulman D., Lichwa, J., and Antal, M.J. (2001), Ind. Eng. Chem. Res. 40, 2934–2941.

    Article  CAS  Google Scholar 

  15. Ulbricht, R. J., Northum, S. J., and Thomas, J. A. (1984), Fund. Appl. Toxicol. 4, 843–853.

    Article  CAS  Google Scholar 

  16. Carrasco, J. E., Martinez, J. M., Negro, M. J., Manero, J., Mazón, P., Sáez, F., and Martín, C. (1989), in Biomass for Energy and Industry, 5th Conference, vol. 2, Grassi, G., Gosse, G., and Dos Santos, G., eds., Elsevier, Essex, England, UK, pp. 38–44.

    Google Scholar 

  17. Ballesteros, I., Oliva, J. M., Navarro, A. A., González, A., Carrasco, J., and Ballesteros, M. (2000), Appl. Biochem. Biotechnol. 84–86, 97–110.

    Article  Google Scholar 

  18. Ballesteros, I., Oliva, J. M., Negro, M. J., Manzanares, P., and Ballesteros, M. (2002), Appl. Biochem. Biotechnol. 98–100, 717–732.

    Article  Google Scholar 

  19. Ballesteros, I., Ballesteros, M., Cabañas, A., Carrasco, J., Martín, C., Negro, M. J., Sáez, F., and Sáez, R. (1991), Appl. Biochem. Biotechnol. 28–29, 307–315.

    Google Scholar 

  20. Ruiz, R. and Ehrman, T. (1996), NREL Chemical Analysis and Testing Laboratory Analytical Procedure, No. 002., National Renewable Energy Laboratory, Golden, CO.

    Google Scholar 

  21. Templeton, D. and Ehrman, T. (1995), NREL Chemical Analysis and Testing Laboratory Analytical Procedure, No. 003., National Renewable Energy Laboratory, Golden, CO.

    Google Scholar 

  22. Weil, J., Brewer, M., Hendrickson, R., Sarikaya, A., and Ladish, M. (1998), Appl. Biochem. Biotechnol. 70–72, 99–111.

    Article  Google Scholar 

  23. Belkacemi, K.; Abatzoglou, N., Overed, R. P., and Chornet, E. (1991), Ind. Eng. Chem. Res. 30, 2416–2425.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mercedes Ballesteros.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Negro, M.J., Manzanares, P., Ballesteros, I. et al. Hydrothermal pretreatment conditions to enhance ethanol production from poplar biomass. Appl Biochem Biotechnol 105, 87–100 (2003). https://doi.org/10.1385/ABAB:105:1-3:87

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:105:1-3:87

Index Entries

Navigation