Skip to main content
Log in

On experimental design and discourse in plasticity research

  • Commentary
  • Published:
Stem Cell Reviews Aims and scope Submit manuscript

Abstract

Communication in the stem cell field requires a common understanding of terminology and that “plasticity” phenomena are model- and, perhaps, species-dependent. Plasticity has generally been applied to unexpected differentiative events; will the term cease being useful when these unexpected pathways become recognized as normative? Four pathways of cell plasticity have now been recognized: (1) facultative, intraorgan self-renewing stem cells; (2) reversion of differentiated cells to blastema-like appearances, common in amphibians, perhaps restricted to neoplasia in mammals; (3) cells of one lineage directly changing to differentiation of another lineage cued by microenvironemental signals; (4) cell-cell fusion leading to changes in differentiation of the “incoming” cell in response to cytoplasmic and perhaps nuclear cues. In all of these, “differentiation” must be understood as a reflection of gene expression that is a highly intricate system of parallel, i.e., nonlinear molecular interactions. Present controversies regarding the plasticity of adult stem cells may be explained both by differences in experimental variables and techniques as well as by differing nonscientific, political, and/or polemical needs of investigators and commentators. Some of the variables in transplantation experiments, which are likely to be important in experimental outcome, but rarely addressed in interpretation of data, are the age of the cell donor and of the strain of mice or species used, the isolation technique used to obtain the putative stem cells, and the inherent effects of transgenic markers used to identify the donor or host cells. Also of great importance, but rarely controlled for in experimental design and interpretation, are the reproducibility and sensitivity of methods used to detect the markers of donor origin, the capacity of differentiated tissue to silence transgenes or alter marker expression, and—finally and most importantly—the different signals that influence plasticity phenomena in very different types of injury and regeneration. In different models of injury there are likely to be significant differences in promoting cell localization, proliferation, and predominance of “plasticity pathway,” if any are involved, in determining outcome. Investigators and others who are interested in cell plasticity must always carefully weigh these (and other) different factors in evaluating published experiments, particularly when presented with overly broad and definitive, although they derive from experiments of very different design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Theise ND. Mayo Clin Proc 2003;78:1004–1009.

    PubMed  Google Scholar 

  2. Theise ND, Wilmut I. Nature 2003;425:21.

    Article  PubMed  CAS  Google Scholar 

  3. Endo T, Bryant SV, Gardiner DM. Dev Biol 2004;270:135–145.

    Article  PubMed  CAS  Google Scholar 

  4. Hatch HM, Zheng D, Jorgensen ML, Petersen BE. Cloning Stem Cells 2002;4:339–351.

    Article  PubMed  CAS  Google Scholar 

  5. Kollet O, Shivtiel S, Chen YQ, et al. J Clin Invest 2003;112:160–169.

    Article  PubMed  CAS  Google Scholar 

  6. Wang X, Willenbring H, Akkari Y, et al. Nature 2003;422:897–901.

    Article  PubMed  CAS  Google Scholar 

  7. Vassilopoulos G, Russell DW. Curr Opin Genet Dev 2003;13:480–485.

    Article  PubMed  CAS  Google Scholar 

  8. Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, et al. Nature 2003;425:968–973.

    Article  PubMed  CAS  Google Scholar 

  9. Blau HM, Chiu CP, Webster C. Cell 1983;32:1171–1180.

    Article  PubMed  CAS  Google Scholar 

  10. Chiu CP, Blau HM. Cell 1984;37:879–887.

    Article  PubMed  CAS  Google Scholar 

  11. Pavlath GK, Blau HM. J Cell Biol 1986;102:124–130.

    Article  PubMed  CAS  Google Scholar 

  12. Spees JL, Olson SD, Ylostalo J, et al. Proc Natl Acad Sci USA 2003;100:2397–2402.

    Article  PubMed  CAS  Google Scholar 

  13. Theise ND, Krause DS. Blood Cells Mol Dis 2001;27:625–631.

    Article  PubMed  CAS  Google Scholar 

  14. Theise ND, Krause DS. Leukemia 2002;16:542–548.

    Article  PubMed  CAS  Google Scholar 

  15. Theise ND. CR Biol 2002;325:1039–1043.

    Article  Google Scholar 

  16. Blau HM, Pavlath GK, Hardeman EC, et al. Science 1985;230:758–766.

    Article  PubMed  CAS  Google Scholar 

  17. Krause DS, Theise ND, Collector MI, et al. Cell 2001;105:369–377.

    Article  PubMed  CAS  Google Scholar 

  18. Wagers AJ, Sherwood RI, Christensen JL, Weissman IL. Science 2002;297:2256–2259.

    Article  PubMed  CAS  Google Scholar 

  19. Theise ND, Krause DS, Sharkis S. Science 2003;299:1317;1317 author reply.

    Article  PubMed  CAS  Google Scholar 

  20. Carlo-Stella C, Di Nicola M, Milani R, et al. Exp Hematol 2004;32:171–178.

    Article  PubMed  CAS  Google Scholar 

  21. Peister A, Mellad JA, Larson BL, Hall BM, Gibson LF, Prockop DJ. Blood 2004;103:1662–1668.

    Article  PubMed  CAS  Google Scholar 

  22. Dewald O, Ren G, Duerr GD, et al. Am J Pathol 2004;164:665–677.

    PubMed  CAS  Google Scholar 

  23. Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Nature 2002;418:41–49.

    Article  PubMed  CAS  Google Scholar 

  24. Jang YY, Collector MI, Baylin SB, Diehl AM, Sharkis SJ. Nat Cell Biol 2004;6:532–539.

    Article  PubMed  CAS  Google Scholar 

  25. Verfaillie CM. Trends Cell Biol 2002;12:502–508.

    Article  PubMed  CAS  Google Scholar 

  26. Ianus A, Holz GG, Theise ND, Hussain MA. J Clin Invest 2003;111:843–850.

    Article  PubMed  CAS  Google Scholar 

  27. Harris RG, Herzog EL, Bruscia EM, Grove JE, Van Arnam JS, Krause DS. Science 2004;305:90–93.

    Article  PubMed  CAS  Google Scholar 

  28. Liu HS, Jan MS, Chou CK, Chen PH, Ke NJ. Biochem Biophys Res Commun 1999;260:712–717.

    Article  PubMed  CAS  Google Scholar 

  29. Balsam LB, Wagers AJ, Christensen JL, Kofidis T, Weissman IL, Robbins RC. Nature 2004;428:668–673.

    Article  PubMed  CAS  Google Scholar 

  30. Grant MB, Caballero S, Brown GA, et al. Adv Exp Med Biol 2003;522:37–45.

    PubMed  Google Scholar 

  31. Galiano RD, Tepper OM, Pelo CR, et al. Am J Pathol 2004;164:1935–1947.

    PubMed  CAS  Google Scholar 

  32. Shumakov VI, Onishchenko NA, Rasulov MF, Krasheninnikov ME, Zaidenov VA. Bull Exp Biol Med 2003;136:192–195.

    Article  PubMed  CAS  Google Scholar 

  33. Crosby JR, Kaminski WE, Schatteman G, et al. Circ Res 2000;87:728–730.

    PubMed  CAS  Google Scholar 

  34. Campbell JH, Efendy JL, Han C, Girjes AA, Campbell GR. J Vasc Res 2000;37:364–371.

    Article  PubMed  CAS  Google Scholar 

  35. Willenbring H, Bailey AS, Foster M, et al. Nat Med 2004;10:744–748.

    Article  PubMed  CAS  Google Scholar 

  36. Willenbring H, Grompe M. J Assist Reprod Genet 2003;20:393,394.

    Article  PubMed  Google Scholar 

  37. Newsome PN, Johannessen I, Boyle S, et al. Gastroenterology 2003;124:1891–1900.

    Article  PubMed  Google Scholar 

  38. Ishikawa F, Drake CJ, Yang S, et al. Ann NY Acad Sci 2003;996:174–185.

    Article  PubMed  CAS  Google Scholar 

  39. Petersen BE, Goff JP, Greenberger JS, Michalopoulos GK. Hepatology 1998;27:433–445.

    Article  PubMed  CAS  Google Scholar 

  40. Petersen BE, Bowen WC, Patrene KD, et al. Science 1999;284:1168–1170.

    Article  PubMed  CAS  Google Scholar 

  41. Theise ND, Nimmakayalu M, Gardner R, et al. Hepatology 2000;32:11–16.

    Article  PubMed  CAS  Google Scholar 

  42. Theise ND. Haematologica 2003;88:361,362.

    PubMed  Google Scholar 

  43. Wulf GG, Luo KL, Jackson KA, Brenner MK, Goodell MA. Haematologica 2003;88:368–378.

    PubMed  Google Scholar 

  44. Factor VM, Radaeva SA. Am J Pathol 1994;145:409–422.

    PubMed  CAS  Google Scholar 

  45. Bhathal PS, Gall JA. Liver 1985;5:311–325.

    PubMed  CAS  Google Scholar 

  46. Wang X, Foster M, Al-Dhalimy M, Lagasse E, Finegold M, Grompe M. Proc Natl Acad Sci USA 2003;100(Suppl 1):11881–11888.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil D. Theise MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Theise, N.D. On experimental design and discourse in plasticity research. Stem Cell Rev 1, 9–13 (2005). https://doi.org/10.1385/SCR:1:1:009

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/SCR:1:1:009

Keywords

Navigation