Skip to main content
Log in

Energy intake and amyotrophic lateral sclerosis

  • Viewpoint
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Roy Walford, a physician and scientist who pioneered research on the anti-aging effects of caloric restriction and subjected himself to a low-energy diet, recently died from amyotrophic lateral sclerosis (ALS). Information from his case, epidemiological findings, and recent controlled studies in mouse models of ALS suggest that low-energy diets might render motor neurons vulnerable to degeneration, whereas high-energy diets are ameliorative. This contrasts with the effects of low-energy diets on various neuronal populations in the brain that respond adaptively, activating pathways that promote plasticity and resistance to disease. One reason that motor neurons might be selectively vulnerable to low-energy diets is that they are unable to engage neuroprotective responses to energetic stress response involving the protein chaperones, such as, heat-shock protein-70.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Batulan Z., Shinder G. A., Minotti S., et al. (2003) High threshold for induction of the stress response in motor neurons is associated with failure to activate HSF1, J. Neurosci. 23, 5789–5798.

    PubMed  CAS  Google Scholar 

  • Desport J. C., Preux P. M., Truong T. C., Vallat J. M., Sautereau D., and Couratier P. (1999) Nutritional status is a prognostic factor for survival in ALS patients. Neurology 53, 1059–1063.

    PubMed  CAS  Google Scholar 

  • Desport J. C., Preux P. M., Magy L., et al. (2001) Factors correlated with hypermetabolism in patients with amyotrophic lateral sclerosis. Am. J. Clin. Nutr. 74, 328–334.

    PubMed  CAS  Google Scholar 

  • Duan W., Guo Z., Jiang H., Ware M., Li X. J. and Mattson M. P. (2003) Dietary restriction normalizes glucose metabolism and BDNF levels, slows disease progression, and increases survival in huntingtin mutant mice. Proc. Natl. Acad. Sci. USA 100, 2911–2916.

    Article  PubMed  CAS  Google Scholar 

  • Dupuis L., Oudart H., Rene F., Gonzalez de Aguilar J. L., and Loeffler J. P. (2004) Evidence for defective energy homeostasis in amyotrophic lateral sclerosis: benefit of a high-energy diet in a transgenic mouse model. Proc. Natl. Acad. Sci. USA 101, 11,159–11,164.

    Article  CAS  Google Scholar 

  • Hamadeh M. J. Rodriquez M. C., Kaczor J. J., and Tarnopolsky M. A. (2005) Caloric restriction transiently improves motor performance but hastens clinical onset of disease in the Cu/Zn-superoxide dismutase mutant G93A mouse. Muscle Nerve 31, 214–220.

    Article  PubMed  CAS  Google Scholar 

  • Kasarskis E. J. and Winslow M. (1989) When did Lou Gehrig’s personal illness begin?, Neurology 39, 1243–1245.

    PubMed  CAS  Google Scholar 

  • Klivenyi P., Ferrante R. J., Matthews R.T., et al. (1999) Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis. Nat. Med. 5, 347–350.

    Article  PubMed  CAS  Google Scholar 

  • Kurzke J. F. (1982) Epidemiology of amyotrophic lateral sclerosis. Adv. Neurol. 36, 281–302.

    Google Scholar 

  • Lassinger B. K. Kwak C., Walford R. L., and Jankovic J. (2004) Atypical parkinsonism and motor neuron syndrome in a Biosphere 2 participant: a possible complication of chronic hypoxia and carbon monoxide toxicity. Movement Disorders 19, 465–469.

    Article  PubMed  Google Scholar 

  • Majoor-Krakauer D., Willems P. J., and Hofman A. (2003) Genetic epidemiology of amyotrophic lateral sclerosis. Clin. Genet. 63, 83–101.

    Article  PubMed  CAS  Google Scholar 

  • Maswood N., Young J., Tilmont E., et al. (2004) Caloric restriction increases neurotrophic factor levels and attenuates neurochemical and behavioral deficits in a primate model of Parkinson’s disease. Proc. Natl. Acad. Sci. USA 101, 18,171–18,176.

    Article  CAS  Google Scholar 

  • O’Connor A. (2004) New York Times, May 4, 2004. http://wwwpathnet.medsch.ucla.edu/department/ news_announcements/walford_endowedlecture ship/NYTimes.htm.

  • Okado-Matsumoto A. and Fridovich I. (2002) Amyotrophic lateral sclerosis: a proposed mechanism. Proc. Natl. Acad. Sci. USA 99, 9010–9014.

    PubMed  CAS  Google Scholar 

  • Petel N. V., Gordon M. N., Connor K. E., et al. (2005) Caloric restriction attenuates A beta-deposition in Alzheimer transgenic models. Neurobiol. Aging 26, 995–1000.

    Article  Google Scholar 

  • Pedersen W. A., and Mattson M. P. (1999) No benefit of dietary restriction on disease onset or progression in amyotrophic lateral sclerosis Cu/Zn-superoxide dismutase mutant mice. Brain Res. 833, 117–120.

    Article  PubMed  CAS  Google Scholar 

  • Scarmeas N., Shih T., Stern Y., Ottman R., and Rowland L. P. (2003) Premorbid weight, body mass, and varsity athletics in ALS. Neurology 59, 773–775.

    Google Scholar 

  • Sinclair D. A. (2005) Toward a unified theory of caloric restriction and longevity regulation. Mech. Ageing Dev. 126, 987–1002.

    Article  PubMed  CAS  Google Scholar 

  • Veldink J. H., Kalmijn S., Groeneveld G. J., Titulaer M. J., Wokke J. H., and van den Berg L. H. (2005) Physical activity and the association with sporadic ALS. Neurology 64, 241–245.

    PubMed  CAS  Google Scholar 

  • Walford R. L. (1985) The extension of maximum life span. Clin. Geriatr. Med. 1, 29–35.

    PubMed  CAS  Google Scholar 

  • Walford R. L., Mock D., Verdery R., and MacCallum T. (2002) Calorie restriction in biosphere 2: alterations in physiologic, hematologic, hormonal, and biochemical parameters in humans restricted for a 2-year period. J. Gerontol. A Biol. Sci. Med. Sci. 57, B211-B224.

    PubMed  Google Scholar 

  • Yu Z. F. and Mattson M. P. (1999) Dietary restriction and 2-deoxyglucose administration reduce focal ischemic brain damage and improve behavioral outcome: evidence for a preconditioning mechanism. J. Neurosci. Res. 57, 830–839.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark P. Mattson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mattson, M.P., Cutler, R.G. & Camandola, S. Energy intake and amyotrophic lateral sclerosis. Neuromol Med 9, 17–20 (2007). https://doi.org/10.1385/NMM:9:1:17

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/NMM:9:1:17

Index Entries

Navigation