Skip to main content
Log in

Contexts and catalysts

A resolution of the localization and integration of function in the brain

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

There has been a historical tension between theories of brain function emphasizing regional specialization and those focusing on integration across regions. This tension continues despite the pervasive use of functional neuroimaging, which enables testing of these theories in the human brain. There are instances of agreement, where regions thought to be critical for a given behavior (e.g., Broca’s area and language production) do become more active when a person engages in that behavior. However, a number of disconcerting results have also been found. These include activation in areas not thought to be important for the behavior, and lack of activation in regions thought to be critical for particular behaviors based on studies of the damaged brain. A recently proposed Neural Context hypothesis of brain function provides a mechanism that can reconcile these apparently disparate findings. The hypothesis states that the functional relevance of a brain area depends on the status of other connected areas—i.e., the context within which the region is operating. A region can participate in several behaviors through variations in its interactions with other areas. It is possible that certain critical nodes serve as Behavioural Catalysts, enabling the transition between behavioral states, without differential alterations in the measured activity. By virtue of its anatomical connections, an area could facilitate a shift in functional connectivity between one set of regions to another. An imaging study on the changing interregional interactions involving the hippocampus in learning and awareness serves as an example of neural context. In this case, the hippocampus may serve to catalyze the transition to awareness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bressler, S. L. and Kelso, J. A. S. (2001) Cortical coordination dynamics and cognition. Trends Cognit Sci 5, 26–36.

    Article  Google Scholar 

  • Cabeza, R. and Nyberg, L. (2000) Imaging cognition II: An empirical review of 275 PET and fMRI studies. J. Cognit. Neurosci. 12, 1–47.

    Article  CAS  Google Scholar 

  • Clark, C. M. and Squire, L. R. (2000) Awareness and the conditioned eyeblink response. In: Eyeblink Classical Conditioning Volume I: Applications in Humans (Woodruff-Pak D. S., Steinmetz J. E., eds.), Kluwer Academic Publishers, Norwell, MA, pp 229–253.

    Google Scholar 

  • Clark, R. E. and Squire, L. R. (1998) Classical conditioning and brain systems: the role of awareness. Science 280, 77–81.

    Article  CAS  Google Scholar 

  • D’Esposito, M., Ballard, D., Aguirre, G. K., and Zarahn, E. (1998) Human prefrontal cortex is not specific for working memory: A functional MRI study. Neuroimage 8, 274–282.

    Article  CAS  Google Scholar 

  • Donoghue, J. P., Suner, S., Sanes, and J. N. Sanes (1990) Dynamic organization of primary motor cortex output to target muscles in adult rats. II. Rapid reorganization following motor nerve lesions. Exp. Brain Res 79, 492–503.

    Article  CAS  Google Scholar 

  • Edelman, G. M. (1978) Group selection and phasic re-entrant signalling: A theory of higher brain function. In: The Mindful Brain (Mountcastle V., Edelman G. M., eds.), MIT Press, Cambridge, MA, pp. 55–100.

    Google Scholar 

  • Felleman, D. J. and Van Essen, D. C. (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex. 1, 1–47.

    Article  CAS  Google Scholar 

  • Friston, K. (1994) Functional and effective connectivity: A synthesis. Hum. Brain. Mapp. 2, 56–78.

    Article  Google Scholar 

  • Friston, K. J. and Price, C. J. (2001) Dynamic representations and generative models of brain function. Brain Research Bulletin 54, 275–285.

    Article  CAS  Google Scholar 

  • Friston, K. J. and Price, C. J. (2003) Degeneracy and redundancy in cognitive anatomy. Trends Cogn. Sci. 7, 151–152.

    Article  Google Scholar 

  • Georgopoulos, A. P., Schwartz A. B., and Kettner R. E. (1986) Neuronal population coding of movement direction. Science 233, 1416–1419.

    Article  CAS  Google Scholar 

  • Haken, H. (1996) Principles of Brain Functioning: A synergetic approach to brain activity, behavior and cognition. Springer, Berlin.

    Google Scholar 

  • Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L., and Pietrini, P. (2001) Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293, 2425–2430.

    Article  CAS  Google Scholar 

  • Horwitz, B., Tagamet, M. A., and McIntosh, A. R. (1999) Neural modeling, functional brain imaging, and cognition. Trends Cognit. Sci. 3, 91–98.

    Article  Google Scholar 

  • Kelso, J. A. S. (1995) Dynamic Patterns: The self-organization of brain and behavior. MIT Press, Cambridge, MA.

    Google Scholar 

  • Kohler, S., McIntosh, A. R., Moscovitch, M., and Winocur, G. (1998) Functional interactions between the medial temporal lobes and posterior neocortex related to episodic memory retrieval. Cereb. Cortex 8, 451–461.

    Article  CAS  Google Scholar 

  • Kozlov, A. P. and Shabaev, V. V. (2000) Analysis of the dynamics of interneuronal functional connections during conditioned reflex activity. Neurosci. Behav. Physiol. 30, 625–634.

    Article  CAS  Google Scholar 

  • McGonigle, D. J., Howseman, A. M., Athwal, B. S., Friston, K. J., Frackowiak, R. S., and Holmes, A. P. (2000) Variability in fMRI: an examination of intersession differences. Neuroimage 11, 708–734.

    Article  CAS  Google Scholar 

  • McIntosh, A. R. (1999) Mapping Cognition to the Brain Through Neural Interactions. Memory 7, 523–548.

    Article  CAS  Google Scholar 

  • McIntosh, A. R. (2000) From location to integration: How neural interactions form the basis for human cognition. In: Memory, Consciousness, and the Brain: The Tallinn Conference (Tulving E., ed). Psychology Press, Philadelphia, PA.

    Google Scholar 

  • McIntosh, A. R. (2001) Towards a network theory of cognition. Neural Netw. 13, 861–876.

    Article  Google Scholar 

  • McIntosh, A. R., Rajah, M. N., Lobaugh, N. J. (2003) Functional connectivity of the medial temporal lobe relates to learning and awareness. J. Neurosci. 23, 6520–6528.

    CAS  Google Scholar 

  • McIntosh, A. R., Nyberg, L., Bookstein, F. L., and Tulving, E. (1997) Differential functional connectivity of prefrontal and medial temporal cortices during episodic memory retrieval. Hum. Brain Mapp. 5, 323–327.

    Article  Google Scholar 

  • McIntosh, A. R., Grady, C. L., Haxby, J. V., Ungerleider, L. G., and Horwitz, B. (1996) Changes in limbic and prefrontal functional interactions in a working memory task for faces. Cereb. Cortex 6, 571–584.

    Article  CAS  Google Scholar 

  • McIntosh, A. R., Grady, C. L., Ungerleider, L. G., Haxby, J. V., Rapoport, S. I., and Horwitz, B. (1994) Network analysis of cortical visual pathways mapped with PET. J. Neurosci. 14, 655–666.

    CAS  Google Scholar 

  • Milton, J. G. and Mackey, M. C. (2000) Neural ensemble coding and statistical periodicity: speculations on the operation of the mind’s eye. J. Physiol. Paris 94, 489–503.

    Article  CAS  Google Scholar 

  • Picton, T. W. and Stuss, D. T. (1994) Neurobiology of conscious experience. Curr. Opin. Neurobiol. 4, 256–265.

    Article  CAS  Google Scholar 

  • Poeppel, D. (1996) A critical review of PET studies of phonological processing. Brain Lang. 55, 317–351.

    Article  CAS  Google Scholar 

  • Pouget, A., Dayan, P., and Zemel, R. (2000) Information processing with population codes. Nat. Rev. Neurosci. 1, 125–132.

    Article  CAS  Google Scholar 

  • Recanzone, G. H., Schreiner, C. E., and Merzenich, M. M. (1992) Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J. Neurosci. 13, 87–103.

    Google Scholar 

  • Scannell, J. W., Burns, G. A., Hilgetag, C. C., O’Neil, M. A., and Young, M. P. (1999) The connectional organization of the cortico-thalamic system of the cat. Cereb Cortex 9, 277–299.

    Article  CAS  Google Scholar 

  • Sporns, O., Tononi, G., and Edelman, G. M. (2000) Connectivity and complexity: the relationship between neuroanatomy and brain dynamics. Neural Netw. 13, 909–922.

    Article  CAS  Google Scholar 

  • Squire, L. R. (1987) Memory and Brain. Oxford University Press, New York, NY.

    Google Scholar 

  • Stephan, K. E., Hilgetag, C. C., Burns, G. A., O’Neill, M. A., Young, M. P., and Kotter, R. (2000) Compu-tational analysis of functional connectivity between areas of primate cerebral cortex. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 355, 111–126.

    Article  CAS  Google Scholar 

  • Stephan, K. E., Marshall, J. C., Friston, K. J., Rowe, J. B., Ritzl, A., Zilles, K., and Fink, G. R. (2003) Lateralized cognitive processes and lateralized task control in the human brain. Science 301, 384–386.

    Article  CAS  Google Scholar 

  • Tononi, G., Sporns, O., and Edelman, G. M. (1994) A measure of brain complexity: Relating functional segregation and integration in the nervous system. Proc. Natl. Acad. Sci. USA 91, 5033–5037.

    Article  CAS  Google Scholar 

  • Tononi, G., Sporns, O., and Edelman, G. M. (1996) A complexity measure for selective matching of signals by the brain. Proc. Natl. Acad. Sci. USA 93, 3422–3427.

    Article  CAS  Google Scholar 

  • Tononi, G., Sporns, O., and Edelman, G. M. (1999) Measures of degeneracy and redundancy in biological networks. Proc. Natl. Acad. Sci. USA 96, 3257–3262.

    Article  CAS  Google Scholar 

  • Wolpaw, J. and Lee, C. (1989) Memory traces in primate spinal cord produced by operant conditioning of H-reflex. J. Neurosci. 61, 563–572.

    CAS  Google Scholar 

  • Wolpaw, J. R. (1997) The complex structure of a simple memory. Trends Neurosci. 20, 588–594.

    Article  CAS  Google Scholar 

  • Worgotter, F. and Eysel, U. T. (2000) Context, state and the receptive fields of striatal cortex cells. Trends Neurosci. 23, 497–503.

    Article  CAS  Google Scholar 

  • Young, M. P. and Yamane, S. (1992) Sparse population coding of faces in the inferotemporal cortex. Science 256, 1327–1331.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McIntosh, A.R. Contexts and catalysts. Neuroinform 2, 175–181 (2004). https://doi.org/10.1385/NI:2:2:175

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/NI:2:2:175

Index Entries

Navigation