Skip to main content
Log in

CT perfusion cerebral blood flow imaging in neurological critical care

  • Review Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Computed tomography (CT) perfusion imaging is a technique for the measurement of cerebral blood flow, cerebral blood volume, and time-to-peak or mean transit time. The technique involves the administration of a single-bolus dose of iodinated contrast material, followed by spiral CT imaging during the passage of the contrast bolus through the cerebral vasculature. CT perfusion is a fast and inexpensive brain imaging modality for use in the management of patients with various neurological disorders, ranging from acute stroke to subarachnoid hemorrhage. This article reviews the technique of CT perfusion and presents several illustrative cases in which this imaging modality was used effectively in the critical care of patients with neurological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Axel L. Cerebral blood flow determination by rapid sequence computed tomography. Radiology 1980;137:679–686.

    PubMed  CAS  Google Scholar 

  2. Mies G, Ishimaru S, Xie Y, Seo K, Hossmann KA. Ischemic thresholds of cerebral protein synthesis and energy state following middle cerebral artery occlusion in rat. J Cereb Blood Flow Metab 1991;11:753–761.

    PubMed  CAS  Google Scholar 

  3. Astrup J, Symon L, Branston NM, Lassen NA. Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia. Stroke 1977;8:51–57.

    PubMed  CAS  Google Scholar 

  4. Morawetz RB, Crowell RH, DeGirolami U, Marcoux FW, Jones TH, Halsey JH. Regional cerebral blood flow thresholds during cerebral ischemia. Fed Proc 1979;38:2493–2494.

    PubMed  CAS  Google Scholar 

  5. Morawetz RB, DeGirolami U, Ojemann RG, Marcoux FW, Crowell RM. Cerebral blood flow determined by hydrogen clearance during middle cerebral artery occlusion in unanesthetized monkeys. Stroke 1978;9:143–149.

    PubMed  CAS  Google Scholar 

  6. Sakai F, Nakazawa K, Tazaki Y, et al. Regional cerebral blood volume and hematocrit measured in normal human volunteers by single-photon emission computed tomography. J Cereb Blood Flow Metab 1985;5:207–213.

    PubMed  CAS  Google Scholar 

  7. Muizelaar JP, Fatouros PP, Schroder ML. A new method for quantitative regional cerebral blood volume measurements using computed tomography. Stroke 1997;28:1998–2005.

    PubMed  CAS  Google Scholar 

  8. Nabavi DG, Cenic A, Craen RA, et al. CT assessment of cerebral perfusion: experimental validation and initial clinical experience. Radiology 1999;213:141–149.

    PubMed  CAS  Google Scholar 

  9. Hatazawa J, Shimosegawa E, Toyoshima H, et al. Cerebral blood volume in acute brain infarction: a combined study with dynamic susceptibility contrast MRI and 99mTc-HMPAO-SPECT. Stroke 1999;30:800–806.

    PubMed  CAS  Google Scholar 

  10. Todd NV, Picozzi P, Crockard HA. Quantitative measurement of cerebral blood flow and cerebral blood volume after cerebral ischaemia. J Cereb Blood Flow Metab 1986;6:338–341.

    PubMed  CAS  Google Scholar 

  11. Latchaw RE, Yonas H, Hunter GJ, et al. Guidelines and recommendations for perfusion imaging in cerebral ischemia: a scientific statement for healthcare professionals by the writing group on perfusion imaging, from the Council on Cardiovascular Radiology of the American Heart Association. Stroke 2003;34:1084–1104.

    Article  PubMed  Google Scholar 

  12. Klotz E, Konig M. Perfusion measurements of the brain: using dynamic CT for the quantitative assessment of cerebral ischemia in acute stroke. Eur J Radiol 1999;30:170–184.

    Article  PubMed  CAS  Google Scholar 

  13. Miles K. Measurement of tissue perfusion by dynamic computed tomography. Br J Radiol 1991;64:409–412.

    Article  PubMed  CAS  Google Scholar 

  14. Koenig M, Klotz E, Luka B, Venderink DJ, Spittler JF, Heuser L. Perfusion CT of the brain: diagnostic approach for early detection of ischemic stroke. Radiology 1998;209:85–93.

    PubMed  CAS  Google Scholar 

  15. Steiger HJ, Aaslid R, Stooss R. Dynamic computed tomographic imaging of regional cerebral blood flow and blood volume. A clinical pilot study. Stroke 1993;24:591–597.

    PubMed  CAS  Google Scholar 

  16. Hunter GJ, Hamberg LM, Ponzo JA, et al. Assessment of cerebral perfusion and arterial anatomy in hyperacute stroke with three-dimensional functional CT: early clinical results. Am J Neuroradiol 1998;19:29–37.

    PubMed  CAS  Google Scholar 

  17. Lev MH, Segal AZ, Farkas J, et al. Utility of perfusion-weighted CT imaging in acute middle cerebral artery stroke treated with intra-arterial thrombolysis: prediction of final infarct volume and clinical outcome. Stroke 2001;32:2021–2028.

    Article  PubMed  CAS  Google Scholar 

  18. Ezzeddine MA, Lev MH, McDonald CT, et al. CT angiography with whole brain perfused blood volume imaging: added clinical value in the assessment of acute stroke. Stroke 2002;33:959–966.

    Article  PubMed  Google Scholar 

  19. Gobbel GT, Cann CE, Iwamoto HS, Fike JR. Measurement of regional cerebral blood flow in the dog using ultrafast computed tomography. Experimental validation. Stroke 1991;22:772–779.

    PubMed  CAS  Google Scholar 

  20. Cenic A, Nabavi DG, Craen RA, Gelb AW, Lee TY. Dynamic CT measurement of cerebral blood flow: a validation study. Am J Neuroradiol 1999;20:63–73.

    PubMed  CAS  Google Scholar 

  21. Cenic A, Nabavi DG, Craen RA, Gelb AW, Lee TY. A CT method to measure hemodynamics in brain tumors: validation and application of cerebral blood flow maps. Am J Neuroradiol 2000;21:462–470.

    PubMed  CAS  Google Scholar 

  22. Nabavi DG, Cenic A, Dool J, et al. Quantitative assessment of cerebral hemodynamics using CT: stability, accuracy, and precision studies in dogs. J Comput Assist Tomogr 1999;23:506–515.

    Article  PubMed  CAS  Google Scholar 

  23. Gobbel GT, Cann CE, Fike JR. Comparison of xenon-enhanced CT with ultrafast CT for measurement of regional cerebral blood flow. Am J Neuroradiol 1993;14:543–550.

    PubMed  CAS  Google Scholar 

  24. Wintermark M, Thiran JP, Maeder P, Schnyder P, Meuli R. Simultaneous measurement of regional cerebral blood flow by perfusion CT and stable xenon CT: a validation study. Am J Neuroradiol 2001;22:905–914.

    PubMed  CAS  Google Scholar 

  25. Gillard JH, Minhas PS, Hayball MP, et al. Assessment of quantitative computed tomographic cerebral perfusion imaging with H2(15)O positron emission tomography. Neurol Res 2000;22:457–464.

    PubMed  CAS  Google Scholar 

  26. Kudo K, Terae S, Katoh C, et al. Quantitative cerebral blood flow measurement with dynamic perfusion CT using the vascularpixel elimination method: comparison with H2(15)O positron emission tomography. Am J Neuroradiol 2003;24:419–426.

    PubMed  Google Scholar 

  27. Gillard JH, Antoun NM, Burnet NG, Pickard JD. Reproducibility of quantitative CT perfusionimaging. Br J Radiol 2001;74:552–555.

    PubMed  CAS  Google Scholar 

  28. Nabavi DG, Cenic A, Henderson S, Gelb AW, Lee TY. Perfusion mapping using computed tomography allows accurate prediction of cerebral infarction in experimental brain ischemia. Stroke 2001;32:175–183.

    PubMed  CAS  Google Scholar 

  29. Hamberg LM, Hunter GJ, Maynard KI, et al. Functional CT perfusion imaging in predicting the extent of cerebral infarction from a 3-hour middle cerebral arterial occlusion in a primate stroke model. Am J Neuroradiol 2002;23:1013–1021.

    PubMed  Google Scholar 

  30. Atherton JV, Huda W. Energy imparted and effective doses in computed tomography. Med Phys 1996;23:735–741.

    Article  PubMed  CAS  Google Scholar 

  31. Huda W, Sandison GA. Estimates of the effective dose equivalent, HE, in positron emission tomography studies. Eur J Nucl Med 1990;17:116–120.

    Article  PubMed  CAS  Google Scholar 

  32. Huda W, Sandison GA. The use of the effective dose equivalent, HE, for 99mTc labelled radiopharmaceuticals. Eur J Nucl Med 1989;15:174–179.

    Article  PubMed  CAS  Google Scholar 

  33. Roberts H. Neuroimaging techniques in cerebrovascular disease: computed tomography angiography/computed tomography perfusion. Semin Cerebrovasc Dis Stroke 2001;1:303–316.

    Article  Google Scholar 

  34. Wintermark M, Maeder P, Verdun FR, et al. Using 80 kVp versus 120 kVp in perfusion CT measurement of regional cerebral blood flow. Am J Neuroradiol 2000;21:1881–1884.

    PubMed  CAS  Google Scholar 

  35. Roberts HC, Roberts TP, Smith WS, Lee TJ, Fischbein NJ, Dillon WP. Multisection dynamic CT perfusion for acute cerebral ischemia: the “toggling-table” technique. Am J Neuroradiol 2001;22:1077–1080.

    PubMed  CAS  Google Scholar 

  36. Rother J, Jonetz-Mentzel L, Fiala A, et al. Hemodynamic assessment of acute stroke using dynamic single-slice computed tomographic perfusion imaging. Arch Neurol 2000;57:1161–1166.

    Article  PubMed  CAS  Google Scholar 

  37. Koenig M, Kraus M, Theek C, Klotz E, Gehlen W, Heuser L. Quantitative assessment of the ischemic brain by means of perfusion-related parameters derived from perfusion CT. Stroke 2001;32:431–437.

    PubMed  CAS  Google Scholar 

  38. Sorensen AG. What is the meaning of quantitative CBF? Am J Neuroradiol 2001;22:235–236.

    PubMed  CAS  Google Scholar 

  39. Tomandl BF, Klotz E, Handschu R, et al. Comprehensive imaging of ischemic stroke with multisection CT. Radiographics 2003;23:565–592.

    Article  PubMed  Google Scholar 

  40. Wintermark M, Reichhart M, Thiran JP, et al. Prognostic accuracy of cerebral blood flow measurement by perfusion computed tomography, at the time of emergency room admission, in acute stroke patients. Ann Neurol 2002;51:417–432.

    Article  PubMed  Google Scholar 

  41. Lee KH, Cho SJ, Byun HS, et al. Triphasic perfusion computed tomography in acute middle cerebral artery stroke: a correlation with angiographic findings. Arch Neurol 2000;57:990–999.

    Article  PubMed  CAS  Google Scholar 

  42. Mayer TE, Hamann GF, Baranczyk J, et al. Dynamic CT perfusion imaging of acute stroke. AJNR Am J Neuroradiol 2000;21:1441–1449.

    PubMed  CAS  Google Scholar 

  43. Eastwood JD, Lev MH, Azhari T, et al. CT perfusion scanning with deconvolution analysis: pilot study in patients with acute middle cerebral artery stroke. Radiology 2002;222:227–236.

    Article  PubMed  Google Scholar 

  44. Wintermark M, Reichhart M, Cuisenaire O, et al. Comparison of admission perfusion computed tomography and qualitative diffusion- and perfusion-weighted magnetic resonance imaging in acute stroke patients. Stroke 2002;33:2025–2031.

    Article  PubMed  CAS  Google Scholar 

  45. Reichenbach JR, Rother J, Jonetz-Mentzel L, et al. Acute stroke evaluated by time-to-peak mapping during initial and early follow-up perfusion CT studies. Am J Neuroradiol 1999;20:1842–1850.

    PubMed  CAS  Google Scholar 

  46. Chamorro A, Sacco RL, Mohr JP, et al. Clinical-computed tomographic correlations of lacunar infarction in the Stroke Data Bank. Stroke 1991;22:175–181.

    PubMed  CAS  Google Scholar 

  47. Derex L, Tomsick TA, Brott TG, et al. Outcome of stroke patients without angiographically revealed arterial occlusion within four hours of symptom onset. Am J Neuroradiol 2001;22:685–690.

    PubMed  CAS  Google Scholar 

  48. Eastwood JD, Lev MH, Wintermark M, et al. Correlation of early dynamic CT perfusion imaging with whole-brain MR diffusion and perfusion imaging in acute hemispheric stroke. Am J Neuroradiol 2003;24:1869–1875.

    PubMed  Google Scholar 

  49. Lev MH, Nichols SJ. Computed tomographic angiography and computed tomographic perfusion imaging of hyperacute stroke. Top Magn Reson Imaging 2000;11:273–287.

    Article  PubMed  CAS  Google Scholar 

  50. Neumann-Haefelin T, Wittsack HJ, Wenserski F, et al. Diffusion-and perfusion-weighted MRI. The DWI/PWI mismatch region in acute stroke. Stroke 1999;30:1591–1597.

    PubMed  CAS  Google Scholar 

  51. Koroshetz WJ, Lev MH. Contrast computed tomography scan in acute stroke: “You can’t always get what you want but…you get what you need.” Ann Neurol 2002;51:415–416.

    Article  PubMed  Google Scholar 

  52. Hino A, Mizukawa N, Tenjin H, et al. Postoperative hemodynamic and metabolic changes in patients with subarachnoid hemorrhage. Stroke 1989;20:1504–1510.

    PubMed  CAS  Google Scholar 

  53. Jakobsen M, Skjodt T, Enevoldsen E. Cerebral blood flow and metabolism following subarachnoid haemorrhage: effect of subarachnoid blood. Acta Neurol Scand 1991;83:226–233.

    PubMed  CAS  Google Scholar 

  54. Kawamura S, Sayama I, Yasui N, Uemura K. Sequential changes in cerebral blood flow and metabolism in patients with subarachnoid haemorrhage. Acta Neurochir (Wien) 1992;114:12–15.

    Article  CAS  Google Scholar 

  55. Carpenter DA, Grubb RL Jr., Tempel LW, Powers WJ. Cerebral oxygen metabolism after aneurysmal subarachnoid hemorrhage. J Cereb Blood Flow Metab 1991;11:837–844.

    PubMed  CAS  Google Scholar 

  56. Grubb R, Raichle M, Eichling J, Gado M. Effects of subarachnoid hemorrhage on cerebral blood volume, blood flow, and oxygen utilization in humans. J Neurosurg 1977;46:446–453.

    PubMed  Google Scholar 

  57. Ishii R. Regional cerebral blood flow in patients with ruptured intracranial aneurysms. J Neurosurg 1979;50:587–594.

    PubMed  CAS  Google Scholar 

  58. Powers WJ, Grubb RL Jr., Baker RP, Mintun MA, Raichle ME. Regional cerebral blood flow and metabolism in reversible ischemia due to vasospasm. Determination by positron emission tomography. J Neurosurg 1985;62:539–546.

    PubMed  CAS  Google Scholar 

  59. Voldby B, Enevoldsen E, Jensen F. Regional CBF, intraventricular pressure and cerebral metabolsim in patients with ruptured intracranial aneurysms. J Neurosurg 1985;62:48–58.

    PubMed  CAS  Google Scholar 

  60. Geraud G, Tremoulet M, Guell A, Bes A. The prognostic value of noninvasive CBF measurement in subarachnoid hemorrhage. Stroke 1984;15:301–305.

    PubMed  CAS  Google Scholar 

  61. Meyer CH, Lowe D, Meyer M, Richardson PL, Neil-Dwyer G. Progressive change in cerebral blood flow during the first three weeks after subarachnoid hemorrhage. Neurosurgery 1983;12:58–76.

    Article  PubMed  CAS  Google Scholar 

  62. Mickey B, Vorstrup S, Voldby B, Lindewald H, Harmsen A, Lassen NA. Serial measurement of regional cerebral blood flow in patients with SAH using 133Xe inhalation and emission computerized tomography. J Neurosurg 1984;60:916–922.

    PubMed  CAS  Google Scholar 

  63. Weir B, Menon D, Overton T. Regional cerebral blood flow in patients with aneurysms: estimation by Xenon 133 inhalation. Can J Neurol Sci 1978;5:301–305.

    PubMed  CAS  Google Scholar 

  64. Messeter K, Brandt L, Ljunggren B, et al. Prediction and prevention of delayed ischemic dysfunction after aneurysmal subarachnoid hemorrhage and early operation. Neurosurgery 1987;20:548–553.

    Article  PubMed  CAS  Google Scholar 

  65. Knuckey NW, Fox RA, Surveyor I, Stokes BA. Early cerebral blood flow and computerized tomography in predicting ischemia after cerebral aneurysm rupture. J Neurosurg 1985;62:850–855.

    PubMed  CAS  Google Scholar 

  66. Talacchi A. Sequential measurements of cerebral blood flow in the acute phase of subarachnoid hemorrhage. J Neurosurg Sci 1993;37:9–18.

    PubMed  CAS  Google Scholar 

  67. Charpentier C, Audibert G, Guillemin F, et al. Multivariate analysis of predictors of cerebral vasospasm occurrence after aneurysmal subarachnoid hemorrhage. Stroke 1999;30:1402–1408.

    PubMed  CAS  Google Scholar 

  68. Dorsch N. The effect and management of delayed vasospasm after subarachnoid hemorrhage. Neurol Med Chir Suppl (Tokyo) 1998;38:156–160.

    Article  Google Scholar 

  69. Darby J, Yonas H, Marks E, Durham S, Snyder R, Nemoto E. Acute cerebral blood flow response to dopamine-induced hypertension after subarachnoid hemorrhage. J Neurosurg 1994;80:857–864.

    PubMed  CAS  Google Scholar 

  70. Pickard JD, Matheson M, Patterson J, Wyper D. Prediction of late ischemic complications after cerebral aneurysm surgery by the intraoperative measurement of cerebral blood flow. J Neurosurg 1980;53:305–308.

    PubMed  CAS  Google Scholar 

  71. Voldby B, Enevoldsen E, Jensen F. Cerebrovascular reactivity in patients with ruptured intracranial aneurysms. J Neurosurg 1985;62:59–67.

    PubMed  CAS  Google Scholar 

  72. Touho H, Ueda H. Disturbance of autoregulation in patients with ruptured intracranial aneurysms: mechanism of cortical and motor dysfunction. Surg Neurol 1994;42:57–64.

    Article  PubMed  CAS  Google Scholar 

  73. Yundt K, Grubb R, Diringer M, Powers W. Autoregulatory vasodilation of parenchymal vessels is impaired during cerebral vasospasm. J Cereb Blood Flow Metab 1998;18:419–424.

    Article  PubMed  CAS  Google Scholar 

  74. Hayashi T, Suzuki A, Hatazawa J, et al. Cerebral circulation and metabolism in the acute stage of subarachnoid hemorrhage. J Neurosurg 2000;93:1014–1018.

    PubMed  CAS  Google Scholar 

  75. Rowe J, Blamire AM, Domingo Z, et al. Discrepancies between cerebral perfusion and metabolism after subarachnoid haemorrhage: a magnetic resonance approach. J Neurol Neurosurg Psychiatry 1998;64:98–103.

    PubMed  CAS  Google Scholar 

  76. Kelly PJ, Gorten RJ, Grossman RG, Eisenberg HM. Cerebral perfusion, vascular spasm, and outcome in patients with ruptured intracranial aneurysms. J Neurosurg 1977;47:44–49.

    PubMed  CAS  Google Scholar 

  77. Kelly PJ, Gorten RJ, Rose JE, Grossman RG, Eisenberg HM. Radionuclide cerebral angiography and the timing of aneurysm surgery. Neurosurgery 1979;5:202–207.

    Article  PubMed  CAS  Google Scholar 

  78. Oskouian RJ Jr., Martin NA, Lee JH, et al. Multimodal quantitation of the effects of endovascular therapy for vasospasm on cerebral blood flow, transcranial Doppler ultrasonographic velocities, and cerebral artery diameters. Neurosurgery 2002;51:30–41.

    Article  PubMed  Google Scholar 

  79. Davis S, Andrews J, Lichtenstein M, et al. A single-photon emission computed tomography study of hypoperfusion after subarachnoid hemorrhage. Stroke 1990;21:252–259.

    PubMed  CAS  Google Scholar 

  80. Davis SM, Andrews JT, Lichtenstein M, Rossiter SC, Kaye AH, Hopper J. Correlations between cerebral arterial velocities, blood flow, and delayed ischemia after subarachnoid hemorrhage. Stroke 1992;23:492–497.

    PubMed  CAS  Google Scholar 

  81. Jabre A, Babikian V, Powsner RA, Spatz EL. Role of single photon emission computed tomography and transcranial Doppler ultrasonography in clinical vasospasm. J Clin Neurosci 2002;9:400–403.

    Article  PubMed  Google Scholar 

  82. Fukui M, Johnson D, Yonas H, Sekhar L, Latchaw R, Pentheny S. Xe/CT cerebral blood flow evaluation of delayed symptomatic cerebral ischemia after subarachnoid hemorrhage. Am J Neuroradiol 1992;13:265–270.

    PubMed  CAS  Google Scholar 

  83. Firlik A, Kaufmann A, Jungreis C, Yonas H. Effect of transluminal angioplasty on cerebral blood flow in the management of symptomatic vasospasm following aneurysmal subarachnoid hemorrhage. J Neurosurg 1997;86:830–839.

    Article  PubMed  CAS  Google Scholar 

  84. Firlik KS, Kaufmann AM, Firlik AD, Jungreis CA, Yonas H. Intraarterial papaverine for the treatment of cerebral vasospasm following aneurysmal subarachnoid hemorrhage. Surg Neurol 1999;51:66–74.

    Article  PubMed  CAS  Google Scholar 

  85. Horn P, Vajkoczy P, Bauhuf C, Munch E, Poeckler-Schoeniger C, Schmiedek P. Quantitative regional cerebral blood flow measurement techniques improve noninvasive detection of cerebrovascular vasospasm after aneurysmal subarachnoid hemorrhage. Cerebrovasc Dis 2001;12:197–202.

    Article  PubMed  CAS  Google Scholar 

  86. Minhas PS, Menon DK, Smielewski P, et al. Positron emission tomographic cerebral perfusion disturbances and transcranial Doppler findings among patients with neurological deterioration after subarachnoid hemorrhage. Neurosurgery 2003;52:1017–1022.

    Article  PubMed  Google Scholar 

  87. Leclerc X, Fichten A, Gauvrit JY, et al. Symptomatic vasospasm after subarachnoid haemorrhage: assessment of brain damage by diffusion and perfusion-weighted MRI and single-photon emission computed tomography. Neuroradiology 2002;44:610–616.

    Article  PubMed  CAS  Google Scholar 

  88. Nabavi DG, LeBlanc LM, Baxter B, et al. Monitoring cerebral perfusion after subarachnoid hemorrhage using CT. Neuroradiology 2001;43:7–16.

    Article  PubMed  CAS  Google Scholar 

  89. Vajkoczy P, Horn P, Thome C, Munch E, Schmiedek P. Regional cerebral blood flow monitoring in the diagnosis of delayed ischemia following aneurysmal subarachnoid hemorrhage. J Neurosurg 2003;98:1227–1234.

    Article  PubMed  Google Scholar 

  90. Lysakowski C, Walder B, Costanza MC, Tramer MR. Transcranial Doppler versus angiography in patients with vasospasm due to a ruptured cerebral aneurysm: a systematic review. Stroke 2001;32:2292–2298.

    Article  PubMed  CAS  Google Scholar 

  91. Roberts HC, Dillon WP, Smith WS. Dynamic CT perfusion to assess the effect of carotid revascularization in chronic cerebral ischemia. Am J Neuroradiol 2000;21:421–425.

    PubMed  CAS  Google Scholar 

  92. Yonas H, Darby JM, Marks EC, Durham SR, Maxwell C. CBF measured by Xe-CT: approach to analysis and normal values. J Cereb Blood Flow Metab 1991;11:716–725.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Nelson Hopkins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harrigan, M.R., Leonardo, J., Gibbons, K.J. et al. CT perfusion cerebral blood flow imaging in neurological critical care. Neurocrit Care 2, 352–366 (2005). https://doi.org/10.1385/NCC:2:3:352

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/NCC:2:3:352

Key Words

Navigation