Skip to main content
Log in

α-Synuclein and dopamine metabolism

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

α-Synuclein (α-Syn), a 140-amino-acid protein richly expressed in presynaptic terminals in the central nervous system, has been shown to play a central role in the pathogenesis of Parkinson’s disease. Although the normal functions of α-Syn remain elusive, accumulating evidence shows that the molecule is involved in multiple steps related to dopamine metabolism, including dopamine synthesis, storage, release, and uptake. The regulatory effect of α-Syn on dopamine metabolism is likely to tone down the amount of cytoplasmic dopamine at nerve terminals, thereby limiting its conversion to highly reactive oxidative molecules. Formation of α-Syn protofibrils triggered by factors such as gene mutations and environmental toxins can make the molecule lose its normal functions, leading to disrupted homeostasis of dopamine metabolism, increased cytoplasmic dopamine levels, and enhanced oxidative stress in dopaminergic neurons. The enhanced oxidative stress will, in turn, exacerbate the formation of α-Syn protofibrils and drive the neurons into a vicious cycle, which will finally result in the selective degeneration of the dopaminergic neurons associated with Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Recchia A., Debetto P., Negro A., Guidolin D., Skaper S.D., and Giusti P. (2004) Alpha-synuclein and Parkinson’s disease. FASEB J. 18, 617–626.

    Article  PubMed  CAS  Google Scholar 

  2. Polymeropoulos M.H., Lavedan C., Leroy E., et al. (1997) Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science 276, 2045–2047.

    Article  PubMed  CAS  Google Scholar 

  3. Krüger R., Kuhn W., Muller T., et al. (1998) Ala30Pro mutation in the gene encoding α-Synuclein in Parkinson’s disease. Nat. Genet. 18, 106–108.

    Article  PubMed  Google Scholar 

  4. Chan P., Tanner C.M., Jiang X., and Langston J.W. (1998) Failure to find the alpha-synuclein gene missense mutation (G209A) in 100 patients with younger onset Parkinson’s disease. Neurology 50, 513–514.

    PubMed  CAS  Google Scholar 

  5. Chan P., Jiang X., Forno L.S., Di Monte D.A., Tanner C.M., and Langston J.W. (1998) Absence of mutations in the coding region of the alphasynuclein gene pathologically proven Parkinson’s disease. Neurology 50, 1136–1137.

    PubMed  CAS  Google Scholar 

  6. Spillantini M.G., Schmidt M.L., Lee V.M., Trojanowski J.Q., Jakes R., and Goedert M. (1997) Alpha-synuclein in Lewy bodies. Nature (London) 388, 839–840.

    Article  CAS  Google Scholar 

  7. Spillantini M.G., Crowther R.A., Jakes R., Hasegawa M., and Goedert M. (1998) Alpha-synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc. Natl. Acad. Sci. USA 95, 6469–6473.

    Article  PubMed  CAS  Google Scholar 

  8. Baba M., Nakajo S., Tu P.H., et al. (1998) Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson’s disease and dementia with Lewy bodies. Am. J. Pathol. 152, 879–884.

    PubMed  CAS  Google Scholar 

  9. Takeda A., Mallory M., Sundsmo M., Honer W., Hansen L., and Masliah E. (1998) Abnormal accumulation of NACP/alpha-synuclein in neurodegenerative disorders. Am. J. Pathol. 152, 367–372.

    PubMed  CAS  Google Scholar 

  10. Trojanowski J.Q. and Lee V.M.Y. (1998) Aggregation of neurofilament and alpha-synuclein proteins in Lewy bodies: implications for the pathogenesis of Parkinson disease and Lewy body dementia. Arch. Neurol. 55, 151–152.

    Article  PubMed  CAS  Google Scholar 

  11. Arima K., Uéda K., Sunohara N., et al. (1998) Immunoelectron microscopic demonstration of NACP/alpha-synuclein epitopes on the filamentous component of Lewy bodies in Parkinson’s disease and in dementia with Lewy bodies. Brain Res. 808, 93–100.

    Article  PubMed  CAS  Google Scholar 

  12. Masliah E., Rockenstein E., Veinbergs I., et al. (2000) Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science 287, 1265–1269.

    Article  PubMed  CAS  Google Scholar 

  13. Feany M.B. and Bender W.W. (2000) A drosophila model of Parkinson’s disease. Nature 404, 394–398.

    Article  PubMed  CAS  Google Scholar 

  14. Conway K.A., Rochet J.C., Bieganski R.M., and Lansbury P.T., Jr. (2001) Kinetic stabilization of the alpha-synuclein protofibril by a dopamine-alpha-synuclein adduct. Science 294, 1346–1349.

    Article  PubMed  CAS  Google Scholar 

  15. Lashuel H.A., Petre B.M., Wall J., et al. (2002) Alpha-synuclein, especially the Parkinson’s disease-associated mutants, forms pore-like annular and tubular protofibrils. J. Mol. Biol. 322, 1089–1102.

    Article  PubMed  CAS  Google Scholar 

  16. Lee H.J. and Lee S.J. (2002) Characterization of cytoplasmic alpha-synuclein aggregates. Fibril formation is tightly linked to the inclusion-forming process in cells. J. Biol. Chem. 277, 48,976–48,983.

    CAS  Google Scholar 

  17. Narhi L., Wood S.J., Steavenson S., et al. (1999) Both familial Parkinson’s disease mutations accelerate alpha-synuclein aggregation. J. Biol. Chem. 274, 9843–9846.

    Article  PubMed  CAS  Google Scholar 

  18. Clayton D.F. and George J.M. (1998) The synucleins: a family of proteins involved in synaptic function, plasticity, neurodegeneration and disease. Trends Neurosci. 21, 249–254.

    Article  PubMed  CAS  Google Scholar 

  19. Lavedan C. (1998) The synuclein family. Genome Res. 8, 871–880.

    PubMed  CAS  Google Scholar 

  20. Lucking C.B. and Brice A. (2000) Alpha-synuclein and Parkinson’s disease. Cell Mol. Life Sci. 57, 1894–1908.

    Article  PubMed  CAS  Google Scholar 

  21. Kahle P.J., Neumann M., Ozman L., and Haass, C. (2000) Physiology and pathophysiology of alpha-synuclein: cell culture and transgenic animal models based on a Parkinson’s disease-associated protein. Ann. NY Acad. Sci. 920, 33–41.

    Article  PubMed  CAS  Google Scholar 

  22. Conway K.A., Lee S.J., Rochet J.C., Ding T.T., Williamson R.E., and Lansbury P.T., Jr. (2000) Acceleration of oligomerization, not fibrillization, is a shared property of both alphasynuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc. Natl. Acad. Sci. USA 97, 571–576.

    Article  PubMed  CAS  Google Scholar 

  23. El-Agnaf O.M. and Irvine G.B. (2000) Formation and properties of amyloid-like fibrils derived from alphasynuclein and related proteins. J. Struct. Biol. 130, 300–309.

    Article  PubMed  CAS  Google Scholar 

  24. Ma Q.L., Chan P., Yoshii M., and Uéda K. (2003) Alpha-synuclein aggregation and neurodegenerative diseases. J. Alzheimer’s Dis. 5, 139–148.

    CAS  Google Scholar 

  25. Mouradian M.M. (2002) Recent advances in the genetics and pathogenesis of Parkinson disease. Neurology 58, 179–185.

    PubMed  Google Scholar 

  26. Zhou W., Schaack J., Zawada W.M., and Freed C.R. (2002) Overexpression of human alphasynuclein causes dopamine neuron death in primary human mesencephalic culture. Brain Res. 926, 42–50.

    Article  PubMed  CAS  Google Scholar 

  27. Xu J., Kao S.-Y., Lee F.J.S., Song W., Jin L.-W., and Yankner B.A. (2002) Dopamine-dependent neurotoxicity of alpha-synuclein: a mechanism for selective neurodegeneration in Parkinson disease. Nat. Med. 8, 600–606.

    Article  PubMed  CAS  Google Scholar 

  28. Maker H.S., Weiss C., Silides D.J., and Cohen G. (1981) Coupling of dopamine oxidation (monoamine oxidase activity) to glutathione oxidation via the generation of hydrogen peroxide in rat brain homogenates. J. Neurochem. 36, 589–593.

    Article  PubMed  CAS  Google Scholar 

  29. Youdim M.B. (2003) What have we learnt from cDNA microarray gene expression studies about the role of iron in MPTP induced neurodegeneration and Parkinson’s disease? J. Neural Transm. 65(Suppl.), 73–88.

    Google Scholar 

  30. Graham D.G. (1978) Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinines. Mol. Pharmacol. 14, 633–643.

    PubMed  CAS  Google Scholar 

  31. George J.M. (2002) The synucleins. Genome Biol. 3, 1–6.

    Google Scholar 

  32. Maroteaux L., Campanelli J.T., and Scheller R.H. (1988) Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J. Neurosci. 8, 2804–2815.

    PubMed  CAS  Google Scholar 

  33. Uëda K., Fukushima H., Masliah E., et al. (1993) Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc. Natl. Acad. Sci. USA 90, 11,282–11,286.

    Article  Google Scholar 

  34. Clayton D.F. and George J.M. (1999) Synucleins in synaptic plasticity and neurodegenerative disorders. J. Neurosci. Res. 58, 120–129.

    Article  PubMed  CAS  Google Scholar 

  35. Perrin R.J., Woods W.S., Clayton D.F., and George J.M. (2000) Interaction of human alpha-synuclein and Parkinson’s disease variants with phospholipids. J. Biol. Chem. 275, 34,393–34,398.

    Article  CAS  Google Scholar 

  36. Du H.N., Tang L., Luo X.Y., et al. (2003) A peptide motif consisting of glycine, alanine, and valine is required for the fibrillization and cytotoxicity of human alpha-synuclein. Biochemistry 42, 8870–8878.

    Article  PubMed  CAS  Google Scholar 

  37. Iwai A., Masliah E., Yoshimoto M., et al. (1995) The precursor protein of non-Aβ component of Alzheimer’s disease amyloid is a presynaptic protein of the central nervous system. Neuron 14, 467–475.

    Article  PubMed  CAS  Google Scholar 

  38. Mori F., Tanji K., Yoshimoto M., Takahashi H., and Wakabayashi K. (2002) Immunohistochemical comparison of alpha- and beta-synuclein in adult rat central nervous system. Brain Res. 941, 118–126.

    Article  PubMed  CAS  Google Scholar 

  39. Kahle P.J., Neumann M., Ozman L., et al. (2000) Subcellular localization of wild-type and Parkinson’s disease-associated mutant alpha-synuclein in human and transgenic mouse brain. J. Neurosci. 20, 6365–6373.

    PubMed  CAS  Google Scholar 

  40. Sharon R., Goldberg M.S., Bar-Josef I., Betensky R.A., Shen J., and Selkoe D.J. (2001) Alpha-Synuclein occurs in lipid-rich high molecular weight complexes, binds fatty acids, and shows homology to the fatty acid-binding proteins. Proc. Natl. Acad. Sci. USA 98, 9110–9115.

    Article  PubMed  CAS  Google Scholar 

  41. Irizarry M.C., Kim T.W., McNamara M., et al. (1996) Characterisation of the precursor of the non-Aβ component of senile plaques (NACP) in the human central nervous system. J. Neuropathol. Exp. Neurol. 55, 889–895.

    PubMed  CAS  Google Scholar 

  42. Galvin J.E., Schuck T.M., Lee V.M., and Trojanowski J.Q. (2001) Differential expression and distribution of alpha-, beta-, and gamma-synuclein in the developing human substantia nigra. Exp. Neurol. 168, 347–355.

    Article  PubMed  CAS  Google Scholar 

  43. Jakowec M.W., Donaldson D.M., Barba J., and Petzinger G.M. (2001) Postnatal expression of alpha-synuclein protein in rodent substantia nigra and striatum. Dev. Neurosci. 23, 91–99.

    Article  PubMed  CAS  Google Scholar 

  44. Li J.Y., Jensen H.P., and Dahlstrom A. (2002) Differential localization of alpha-, beta- and gamma-synucleins in the rat CNS. Neuroscience 113, 463–478.

    Article  PubMed  CAS  Google Scholar 

  45. Davidson W.S., Jonas A., Clayton D.F., and George J.M. (1998) Stabilization of alpha-synuclein secondary structure upon binding to synthetic membrane. J. Biol. Chem. 273, 9443–9449.

    Article  PubMed  CAS  Google Scholar 

  46. Murphy D.D., Rueter S.M., Trojanovski J.Q., and Lee V.M.-Y. (2000) Synucleins are developmentally expressed, and α-Synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. J. Neurosci. 20, 3214–3220.

    PubMed  CAS  Google Scholar 

  47. Ostrerova N., Petrucelli L., Farrer M., et al. (1999) Alpha-Synuclein shares physical and functional homology with 14-3-3 proteins. J. Neurosci. 19, 5782–5791.

    PubMed  CAS  Google Scholar 

  48. Kim T.D., Paik S.R., Yang C.H., and Kim J. (2000) Structural changes in alpha-synuclein affect its chaperone-like activity in vitro. Protein Sci. 9, 2489–2496.

    Article  PubMed  CAS  Google Scholar 

  49. Baptista M.J., O’Farrell C., Daya S., et al. (2003) Co-ordinate transcriptional regulation of dopamine synthesis genes by α-Synuclein in human neuroblastoma cell lines. J. Neurochem. 85, 957–968.

    Article  PubMed  CAS  Google Scholar 

  50. Goers J., Manning-Bog A.B., McCormack A.L., et al. (2003) Nuclear localization of α-Synuclein and its interaction with histones. Biochemistry 42, 8465–8471.

    Article  PubMed  CAS  Google Scholar 

  51. Cabin D.E., Shimazu K., Murphy D., et al. (2002) Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking alpha-synuclein. J. Neurosci. 22, 8797–8807.

    PubMed  CAS  Google Scholar 

  52. Lotharius J., Barg S., Wiekop P., Lundberg C., Raymon H.K., and Brundin P. (2002) Effect of mutant alpha-synuclein on dopamine home-ostasis in a new human mesencephalic cell line. J. Biol. Chem. 277, 38,884–38,894.

    Article  CAS  Google Scholar 

  53. Lotharius J. and Brundin P. (2002) Impaired dopamine storage resulting from alpha-synuclein mutations may contribute to the pathogenesis of Parkinson’s disease. Hum. Mol. Genet. 11, 2395–2407.

    Article  PubMed  CAS  Google Scholar 

  54. Lotharius J. and Brundin P. (2002) Pathogenesis of Parkinson’s disease: dopamine, vesicles and alpha-synuclein. Nat. Rev. Neurosci. 3, 932–942.

    Article  PubMed  CAS  Google Scholar 

  55. Jenco J.M., Rawlingson A., Daniels B., and Morris A.J. (1998) Regulation of phospholipase D2: selective inhibition of mammalian phospholipase D isoenzymes by α- and β-synucleins. Biochemistry 37, 4901–4909.

    Article  PubMed  CAS  Google Scholar 

  56. Ahn B.H., Rhim H., Kim S.Y., et al. (2002) α-Synuclein interacts with phospholipase D isozymes and inhibits pervandate induced phospholipase D activation in human embryonic kidney 293 cells. J. Biol. Chem. 277, 12,334–12,342.

    CAS  Google Scholar 

  57. Okochi M., Walter J., Koyama A., et al. (2000) Constitutive phosphorylation of the Parkinson’s disease associated alpha-synuclein. J. Biol. Chem. 275, 390–397.

    Article  PubMed  CAS  Google Scholar 

  58. Jensen P.H., Hojrup P., Hager H., et al. (1999) Alpha-synuclein binds to T and stimulates the protein kinase A-catalysed τ phosphorylation of serine residues 262 and 356. J. Biol. Chem. 274, 25,481–25,489.

    CAS  Google Scholar 

  59. Pronin A.N., Morris A.J., Surguchov A., and Benovic J.L. (2000) Synucleins are a novel class of substrates for G protein-coupled receptor kinases. J. Biol. Chem. 275, 26,515–26,522.

    Article  CAS  Google Scholar 

  60. Ellis C.E., Schwartzberg P.L., Grider T.L., Fink D.W., and Nussbaum R.L. (2001) Alpha-synuclein is phosphorylated by members of the Src family of protein-tyrosine kinases. J. Biol. Chem. 276, 3879–3884.

    Article  PubMed  CAS  Google Scholar 

  61. Nakamura T., Yamashita H., Nagano Y., et al. (2002) Activation of Pyk2/RAFTK induces tyrosine phosphorylation of alpha-synuclein via Src-family kinases. FEBS Lett. 521, 190–194.

    Article  PubMed  CAS  Google Scholar 

  62. Schmidt A., Wolde M., Thiele C., et al. (1999) Endophilin I mediates synaptic vesicle formation by transfer arachidonate to lysophosphatidic acid. Nature (London) 401, 133–141.

    Article  CAS  Google Scholar 

  63. Heuser J.E. and Reese T.S. (1973) Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J. Cell Biol. 57, 315–344.

    Article  PubMed  CAS  Google Scholar 

  64. Lucking C.B. and Brice A. (2000) Alpha-synuclein and Parkinson’s disease. Cell. Mol. Life Sci. 57, 1894–908.

    Article  PubMed  CAS  Google Scholar 

  65. Alim M.A., Hossain M.S., Arima K., et al. (2002) Tubulin seeds alpha-synuclein fibril formation. J. Biol. Chem. 277, 2112–2117.

    Article  PubMed  CAS  Google Scholar 

  66. Jensen P.H., Islam K., Kenney J., Nielsen M.S., Power J., and Gai W.P. (2000) Microtubule-associated protein 1B is a component of cortical Lewy bodies and binds alpha-synuclein filaments. J. Biol. Chem. 275, 21,500–21,507.

    CAS  Google Scholar 

  67. D’Andrea M.R., Ilyin S., and Plata-Salaman C.R. (2001) Abnormal patterns of microtubule-associated protein-2 (MAP-2) immunolabeling in neuronal nuclei and Lewy bodies in Parkinson’s disease substantia nigra brain tissues. Neurosci. Lett. 306, 137–142.

    Article  PubMed  CAS  Google Scholar 

  68. Engelender S., Kaminsky Z., Guo X., et al. (1999) Synphilin-1 associates with alpha-synuclein and promotes the formation of cytosolic inclusions. Nat. Genet. 22, 110–114.

    Article  PubMed  CAS  Google Scholar 

  69. Sharma N., Hewett J., Ozelius L.J., et al. (2001) A close association of torsin A and alpha-synuclein in Lewy bodies: a fluorescence resonance energy transfer study. Am. J. Pathol. 159, 339–344.

    PubMed  CAS  Google Scholar 

  70. Sidhu A., Wersinger C., and Vernier P. (2004) Alpha-Synuclein regulation of the dopaminergic transporter: a possible role in the pathogenesis of Parkinson’s disease. FEBS Lett. 565(1–3), 1–5.

    Article  PubMed  CAS  Google Scholar 

  71. Wersinger C., Prou D., Vernier P., Niznik H.B., and Sidhu A. (2003) Mutations in the lipid-binding domain of alpha-synuclein confer overlapping, yet distinct, functional properties in the regulation of dopamine transporter activity. Mol. Cell. Neurosci. 24(1), 91–105.

    Article  PubMed  CAS  Google Scholar 

  72. Wersinger C., Vernier P., and Sidhu A. (2004) Trypsin disrupts the trafficking of the human dopamine transporter by alpha-synuclein and its A30P mutant. Biochemistry 43(5), 1242–1253.

    Article  PubMed  CAS  Google Scholar 

  73. Wersinger C. and Sidhu A. (2003) Attenuation of dopamine transporter activity by alpha-synuclein. Neurosci Lett. 340(3), 189–192.

    Article  PubMed  CAS  Google Scholar 

  74. Wersinger C., Prou D., Vernier P., and Sidhu A. (2003) Modulation of dopamine transporter function by alpha-synuclein is altered by impairment of cell adhesion and by induction of oxidative stress. FASEB J. E-pub. (14), 2151–2153.

    Google Scholar 

  75. Perez R.G., Waymire J.C., Lin E., Liu J.J., Guo F., and Zigmond M.J. (2002) A role for α-synuclein in the regulation of dopamine biosynthesis. J. Neurosci. 22, 3090–3099.

    PubMed  CAS  Google Scholar 

  76. Kumer S.C. and Vrana K.E. (1996) Intricate regulation of tyrosine hydroxylase activity and gene expression. J. Neurochem. 67, 443–462.

    Article  PubMed  CAS  Google Scholar 

  77. Ichimura T., Isobe T., Okuyama T., Yamauchi T., and Fujisawa H. (1987) Brain 14-3-3 protein is an activator protein that activates tryptophan 5-monooxygenase and tyrosine 3-monooxygenase in the presence of Ca2+ calmodulin-dependent protein kinase II. FEBS Lett. 219, 79–82.

    Article  PubMed  CAS  Google Scholar 

  78. Ichimura T., Isobe T., Okuyama T., et al. (1988) Molecular cloning of cDNA coding for brain-specific 14-3-3 protein, a protein kinase-dependent activator of tyrosine and tryptophan hydroxylases. Proc. Natl. Acad. Sci. USA 85, 7084–7088.

    Article  PubMed  CAS  Google Scholar 

  79. Toska K., Kleppe R., Armstrong C.G., Morrice N.A., Cohen P., and Haavik J. (2002) Regulation of tyrosine hydroxylase by stress-activated protein kinases. J. Neurochem. 83, 775–783.

    Article  PubMed  CAS  Google Scholar 

  80. Sakurada K., Ohshima-Sakurada M., Palmer T.D., and Gage F.H. (1999) Nurr1, an orphan nuclear receptor, is a transcriptional activator of endogenous tyrosine hydroxylase in neural progenitor cells derived from the adult brain. Development 126, 4017–4026.

    PubMed  CAS  Google Scholar 

  81. Yu S., Zuo X.H., Li Y.H., et al. (2004) Inhibition of tyrosine hydroxylase expression in α-synuclein-transfected dopaminergic neuronal cells. Neurosci. Lett. 367, 34–39.

    Article  PubMed  CAS  Google Scholar 

  82. Moussa C.E., Wersinger C., Tomita Y., and Sidhu A. (2004) Differential cytotoxicity of human wild type and mutant alpha-Synuclein in human neuroblastoma SH-SY5Y cells in the presence of dopamine. Biochemistry 43(18), 5539–5550.

    Article  PubMed  CAS  Google Scholar 

  83. Giasson B.I. and Lee V.M. (2003) Are ubiquitination pathways central to Parkinson’s disease? Cell 114, 1–8.

    Article  PubMed  CAS  Google Scholar 

  84. Lansbury P.T. Jr. and Brice A. (2002) Genetics of Parkinson’s disease and biochemical studies of implicated gene products. Curr. Opin. Genet Dev. 12, 299–306.

    Article  PubMed  CAS  Google Scholar 

  85. Giasson B.I., Duda J.E., Quinn S.M., Zhang B., Trojanowski J.Q., and Lee V.M. (2002) Neuronal alpha-synucleinopathy with severe movement disorder in mice expressing A53T human alpha-synuclein. Neuron 34, 521–533.

    Article  PubMed  CAS  Google Scholar 

  86. Richfield E.K., Thiruchelvam M.J., Cory-Slechta D.A., et al. (2002) Behavioral and neurochemical effects of wild-type and mutated human alpha-synuclein in transgenic mice. Exp. Neurol. 175, 35–48.

    Article  PubMed  CAS  Google Scholar 

  87. Vila M., Vukosavic S., Jackson-Lewis V., Neystat M., Jakowec M., and Przedborski S. (2000) Alpha-synuclein up-regulation in substantia nigra dopaminergic neurons following administration of the parkinsonian toxin MPTP. J. Neurochem. 74, 721–729.

    Article  PubMed  CAS  Google Scholar 

  88. Sherer T.B., Kim J.H., Betarbet R., and Greenamyre J.T. (2003) Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation. Exp Neurol. 179(1), 9–16.

    Article  PubMed  CAS  Google Scholar 

  89. Barja G. (2000) The flux of free radical attack through mitochondrial DNA is related to aging rate. Aging Clin. Exp. Res. 12, 342–355.

    CAS  Google Scholar 

  90. Giasson B.I., Duda J.E., Murray I.V., et al. (2000) Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science 290, 985–989.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, S., Uéda, K. & Chan, P. α-Synuclein and dopamine metabolism. Mol Neurobiol 31, 243–254 (2005). https://doi.org/10.1385/MN:31:1-3:243

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:31:1-3:243

Index Entries

Navigation