Skip to main content
Log in

Therapeutic genes for cancer gene therapy

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Cancer still represents a disease of high incidence and is therefore one major target for gene therapy approaches. Gene therapy for cancer implies that ideally selective tumor cell killing or inhibition of tumor cell growth can be achieved using nucleic acids (DNA and RNA) as the therapeutic agent. Therefore, the majority of cancer gene therapy strategies introduce foreign genes into tumor cells which aim at the immunological recognition and destruction, the direct killing of the target cells or the interference with tumor growth. To achieve this goal for gene therapy of cancer, a broad variety of therapeutic genes are currently under investigation in preclinical and in clinical studies. These genes are of very different origin and of different mechanisms of action, such as human cytokine genes, genes coding for immunstimulatory molecules/antigens, genes encoding bacterial or viral prodrug-activating enzymes (suicide genes), tumor suppressor genes, or multidrug resistance genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Colombo, M. P., Modesti, A., Parmiani, G., and Forni, G. Perspectives in cancer research: Local cytokine availability elicits tumor rejection and systemic immunity trough granulocyte- T-lymphocyte cross-talk. Cancer Res. 52, 1–5, 1992.

    Google Scholar 

  2. Uckert, W. and Walther, W. (1994) Retrovirus-mediated gene transfer in cancer therapy. Pharmac. Ther. 63, 323–347.

    Article  CAS  Google Scholar 

  3. Allione, A., Consalvo, M., Nanni, P., Lollini, L., Cavallo F., Giovarelli, M., Forni, M., Gulino, A., Colombo, M. P., and Dellabona, P. (1994) Immunizing and curative potential of replicating and nonreplicating murine mammary adenocarcinoma cells engineered with interleukin (IL)-2, IL-4, IL-6, IL-7, IL 10, tumor necrosis factor a, granulocyte-macrophage colony-stimulating factor, and g-interferon gene or admixed with conventional adjuvants. Cancer Res. 54, 6022–6026.

    PubMed  CAS  Google Scholar 

  4. Tepper, R. I. and Mulé, J. J. (1994) Experimental and clinical studies of cytokine gene-modified tumor cells. Hum. Gene Ther. 5, 153–164.

    PubMed  CAS  Google Scholar 

  5. Hock, H., Dorsch, M., Kuzendorf, U., Quin, Z., Diamantstein, T., and Blankenstein, T. (1993) Mechanism of rejection induced by tumor cell-targeted gene transfer of interleukin-2, interleukin-4, interleukin-7, tumor necrosis factor or interferon-gamma. Proc. Natl. Acad. Sci. USA 90, 2774–2778.

    Article  PubMed  CAS  Google Scholar 

  6. McBride, W. H., Tacker, J. D., Comora, S., Economou, J. S., Keley, D., Hogge, D., Dubinett, S. M., and Dougherty, G. J. (1992) Genetic modification of a murine fibrosarcoma to produce interleukin-7 stimulates host cell infiltration and tumor immunity. Cancer Res. 52, 3931–3937.

    PubMed  CAS  Google Scholar 

  7. Tahara, H., Zitvogel, L. Storkus, W. J., Zeh, H. J., McKinney, T. G., Schreiber, R. D., Gubler, U., Robbins, P. D., and Lotze, M. T. (1995) Effective eradication of established murine tumors with IL-12 gene therapy using a polycistronic retroviral vector. J. Immunol. 154, 6466–6474.

    PubMed  CAS  Google Scholar 

  8. Asher, A. L., Mulé, J. J., Kasid, A., Restifo, N. P., Salo J. L., Reichert, C. M., Jaffe, G., Fendly, B., Kriegler, M., and Rosenberg, S. A. (1991) Murine tumor cells transduced with the gene for tumor necrosis factor-a. J. Immunol. 146, 3227–3234.

    PubMed  CAS  Google Scholar 

  9. Walther, W., Fichtner, I., and Uckert, W. (1993) Retrovirus-mediated gene transfer of tumor necrosis factor alpha into colon carcinoma cells generates a growth inhibition. Anticancer Res. 13, 1565–1574.

    PubMed  CAS  Google Scholar 

  10. Steinmann, R. M. (1991) The dendritic cell system and its role in immunogenicity. Rev. Immunol. 9, 271–296.

    Article  Google Scholar 

  11. Dranoff, G., Jaffee, E., Lazenby, A., Golumbek, P., Levitsky, H., Brose, K., Jackson, V., Hamada, H., Pardoll, P., and Mulligan, R. C. (1993) Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc. Natl. Acad. Sci. USA 90, 3539–3543.

    Article  PubMed  CAS  Google Scholar 

  12. Mackensen, A., Lindemann, A., and Mertelsmann, R. (1997) Immunostimulatory cytokines in somatic cells and gene therapy of cancer. Cytokine & Growth Factor Reviews 8, 119–128.

    Article  CAS  Google Scholar 

  13. Sobol, R. E., Fakhrai, H., Shawler, D., Gjerset, R., Dorigo, O., Carson, C., Khaleghi, T., Koziol, J., Shiftan, T. A., and Royston, I. (1995) Interleukin-2 gene therapy in a patient with glioblastoma. Gene Ther. 2, 164–167.

    PubMed  CAS  Google Scholar 

  14. Nabel, G. J., Nabel, E. G., Yang, Z. Y., Fox, B. A., Plautz, G. E., Gao, X., Huang, L., Shu, S., Gordon, D., and Chang, A. E. (1993) Direct gene transfer with DNA-liposome complexes in melanoma: expression, biologic activity, and lack of toxicity in humans. Proc. Natl. Acad. Sci. USA 90, 11307–11311.

    Article  PubMed  CAS  Google Scholar 

  15. Moolten, F. L. and Wells, J. M. (1990) Curability of tumors bearing herpes thymidine kinase genes transferred by retrovirla vectors. J. Natl. Cancer Inst. 82, 287–300.

    Article  Google Scholar 

  16. Freeman, S. M., Aboud, C. N., Whartenby, K. A., Packman C.H., Koeplin, D. S., Moolten, F. L., and Abraham, G. N. (1993) The “bystander effect”: tumour regression when a fraction of the tumour mass is genetically modified. Cancer Res. 53, 5247–5283.

    Google Scholar 

  17. Sorscher, E. J., Peng, S., Bebo, Z., Allan, P. W., Bellett, L. L. Jr., and Parker, W. B. (1994) Tumor cell bystander killing in colonic carcinoma utilizing the Escherichia coli DeoD gene to generate toxic purines. Gene Ther. 1, 233–238.

    PubMed  CAS  Google Scholar 

  18. Mullen, C. A., Kilstrup, M., and Blease, M. (1992) Transfer of the bacterial gene for cytosine deaminase to mammalian cells confers lethal sensitivity to 5-fluorocytosine: a negative selection system. Proc. Natl. Acad. Sci. USA 89, 33–37.

    Article  PubMed  CAS  Google Scholar 

  19. Mullen, C. A., Coale, M. M., Lowe, R., and Blease, M. (1994) Tumours eliminated in vivo with 5-fluorocytosine and induce protective immunity to wild type tumour. Cancer Res. 54, 1503–1506.

    PubMed  CAS  Google Scholar 

  20. Ramesh, R., Marrogi, A. J., Munshi, A., Abboud, C. N., and Freeman, S. M. (1996) In vivo analysis of the bystander effect: a cytokine cascade. Exp. Heamatol. 24, 829–838.

    Google Scholar 

  21. Kuriyama, S., Kikukawa, M., Masui, K., Okuda, H., Nakatani, T., Sakamoto, T., Yoshiji, H., Fukui, H., Ikenaka, K., Mullen, C., and Tsuji, T. (1999) Cytosine deaminase/5-fluorocytosine gene therapy can induce efficient anti-tumor effects and protective immunity in immunocompetent mice but not in athymic nude mice. Int. J. Cancer 81, 592–597.

    Article  PubMed  CAS  Google Scholar 

  22. Pope, I. M., Poston, G. J., and Kinsella, A. R. (1997) The role of the bystander effect in suicide gene therapy. Eur. J. Cancer 33, 1005–1016.

    Article  PubMed  CAS  Google Scholar 

  23. Wei, M. X., Tamiya, T., Chase, M., Boviatsis, E. J., Chang, T. K., Kowall, N. W., Hochberg, F. H., Waxman, D. J., Breakfield, X. O., and Chiocca, E. A. (1994) Experimental tumor therapy in mice using the cyclophosphamide-activating cytochrome P450 2B1 gene. Hum. Gene Ther. 5, 969–978.

    PubMed  CAS  Google Scholar 

  24. Wills, K. N., Maneval, D. C., Menzel, P., Harris, M. P., Sutjipto, S., Vaillancourt, M. T., Huang, W. M., Johnson, D. E., Anderson, S. C., and Wen, S. F. (1994) Development and characterization of recombinant adenoviruses encoding human p53 for gene therapy of cancer. Hum. Gene Ther. 5, 1079–1088.

    PubMed  CAS  Google Scholar 

  25. Roth, J. A. Nguyen, D., Lawrence, D. D., Kemp, B. L., Carrasco, C. H., Ferson, D. Z., Hong, W. K., Kowaki, R., Lee, J. J., Nesbitt, J. C., Pisters, K. M., Putnam, J. B., Schea, R., Shin, D. M., Walsh, G. L., Dolormente, M. M., Han, C. I., Martin, F. D., Yen, N., Xu, K., Stephens, L. C., McDonnell, T. J., Mukhopadhyay, T., and Cai, D. (1996) Retrovirus-mediated wild-type p53 gene transfer to tumors of patients with lung cancer. Nature Med. 2, 985–991.

    Google Scholar 

  26. Habib, N. A., Ding, S.-F., El-Masry, R., Mitry, R. R., Honda, K., Michail, N. E., Dalla-Serra, G., Izzi, G., Greco, L., Bassyouni, M., El-Thonkhy, M., and Abdel-Gaffar, Y. (1996) Preliminary report: the short-term effects of direct p53 DNA injectionin primary hepatocellular carcinomas. Cancer Detect. & Preven. 20, 103–107.

    Google Scholar 

  27. Mukhopadhyay, T., Tainsky, M., Cavender, A. C., and Roth, J. A. (1991) Specific inhibition of K-ras expression and tumorigenicity of lung cancer cells by antisense RNA. Cancer Res. 51, 1744–1748.

    PubMed  CAS  Google Scholar 

  28. Georges, R. N., Mukhopadhyay, T., Zhang, Y., Yen, N., and Roth, J. A. (1993) Prevention of orthotopic human lung cancer growth by intratracheal installation of a retroviral antisense K-ras construct. Cancer Res. 53, 1743–1746.

    PubMed  CAS  Google Scholar 

  29. Koizumi, M., Kamiya, H., and Othsuka, E. (1992) Ribozymes designed to inhibit transformation of NIH 3T3 cells by the activated c-H-ras gene. Gene 117, 179–184.

    Article  PubMed  CAS  Google Scholar 

  30. Kashani-Sabet, M., Funato, T., Tone, T., Jiao, L., Wang, W., Yoshida, E., Kashfinn, B. I., Shitara, T., Wu, A. M., and Moreno, J. G. (1992) Reversal of the malignant phenotype by an anti-ras ribozyme. Antisense Res. Dev. 2, 3–15.

    PubMed  CAS  Google Scholar 

  31. Dorigo, O., Turla, S. T., Lebedeva, S., and Gjerset, R. A. (1998) Sensitization of rat glioblastoma multiforme to cisplatin in vivo following restoration of wild-type p53 function. J. Neurosurgery 88, 535–540.

    Article  CAS  Google Scholar 

  32. O’Connor, P. M., Jackman, J., Jondle, D., Bhatia, K., Magrath, I., and Kohn, K. W. (1993) Role of the p53 tumor suppressor gene in cell cycle arrest and radiosensitivity of Burkitt’s lymphoma cell lines. Cancer Res. 53, 4776–4780.

    PubMed  CAS  Google Scholar 

  33. Roth, J. A. (1996) Clinical protocol: modification of tumor suppressor gene expression and induction of apoptosis in non-small cell lung cancer (NSCLC) with an adenovirus vector expressing wild-type p53 and cisplatin. Hum. Gene Ther. 7, 1013–1030.

    Google Scholar 

  34. Deisseroth, A. B., Holmes, F., Hortobagyi, G., and Champlin, R. (1996) Use of safety-modified retrovirus to introduce chemotherapy resistance sequences into normal hematopoietic cells for chemoprotection during the therapy of breast cancer: a pilot trial. Hum. Gene Ther. 7, 401–416.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Walther.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walther, W., Stein, U. Therapeutic genes for cancer gene therapy. Mol Biotechnol 13, 21–28 (1999). https://doi.org/10.1385/MB:13:1:21

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MB:13:1:21

Index Entries

Navigation