Skip to main content
Log in

Chlamydomonas reinhardtii

A protein expression system for pharmaceutical and biotechnological proteins

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Recombinant proteins have become more and more important for the pharmaceutical and chemical industry. Although various systems for protein expression have been developed, there is an increasing demand for inexpensive methods of large-scale production. Eukaryotic algae could serve as a novel option for the manufacturing of recombint proteins, as they can be cultivated in a cheap and easy manner and grown to high cell densities. Being a model organism, the unicellular green alga Chlamydomonas reinhardtii has been studied intensively over the last decades and offers now a complete toolset for genetic manipulation. Recently, the successful expression of several proteins with pharmaceutical relevance has been reported from the nuclear and the chloroplastic genome of this alga, demonstrating its ability for biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Johnson, I. S. (1983) Human insulin from recombinant DNA technology. Science 219, 632–637.

    Article  PubMed  CAS  Google Scholar 

  2. Walsh, G. (2003) Biopharmaceutical benchmarks-2003. Nat. Biotechnol. 21, 865–870.

    Article  PubMed  CAS  Google Scholar 

  3. Walsh, G. (2004) Secod-generation biopharmaceuticals. Eur. J. Pharm. Biopharm. 58, 185–196.

    Article  PubMed  CAS  Google Scholar 

  4. Robinson, K. (2002) An industry comes of age. Biopharm. Int. 15, 20–24.

    Google Scholar 

  5. Werner, R. G. (2004) Economic aspects of commercial manufacture of biopharmaceuticals. J. Biotechnol. 113, 171–182.

    Article  PubMed  CAS  Google Scholar 

  6. Lorenz, P. and Eck, J. (2005) Metagenomics and industrial applications. Nat. Rev. Microbiol. 3, 510–516.

    Article  PubMed  CAS  Google Scholar 

  7. Garber, K. (2001) Biotech industry faces new bottleneck. Nat. Biotechnol. 19, 184–185.

    Article  PubMed  CAS  Google Scholar 

  8. Gao, B. and Tsan, M. F. (2003) Endotoxin contamination in recombinant human heat shock protein 70 (Hsp70) preparation is responsible for the induction of tumor necrosis factor alpha release by murine macrophages. J. Biol. Chem. 278, 174–179.

    Article  PubMed  CAS  Google Scholar 

  9. Cereghino, J. L. and Cregg, J. M. (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol. Lett. 24, 45–66.

    Article  CAS  Google Scholar 

  10. Franklin, S. E. and Mayfield, S. P. (2004) Prospects for molecular farming in the green alga Chlamydomonas. Curr. Opin. Plant Biol. 7, 159–165.

    Article  PubMed  CAS  Google Scholar 

  11. Maga, E. A. (2005) Genetically engineered livestock: closer than we think? Trends Biotechnol. 23, 533–535.

    Article  PubMed  CAS  Google Scholar 

  12. Kost, T. A., Condreay, J. P., and Jarvis, D. L. (2005) Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat. Biotechnol. 23, 567–575.

    Article  PubMed  CAS  Google Scholar 

  13. Fischer, R. and Emans, N. (2000) Molecular farming of pharmaceutical proteins. Transgenic Res. 9, 279–299.

    Article  PubMed  CAS  Google Scholar 

  14. Quist, D. and Chapela, I. H. (2001) Transgenic DNA introgressed into traditional maize landraces in Oaxaca, Mexico. Nature 414, 541–543.

    Article  PubMed  CAS  Google Scholar 

  15. Rieger, M. A., Lamond, M., Preston, C., Powles, S. B., and Roush, R. T. (2002) Pollen-mediated movement of herbicide resistance between commerical canola fields. Science 296, 2386–2388.

    Article  PubMed  CAS  Google Scholar 

  16. Leon-Banares, R., Gonzalez-Ballester, D., Galvan, A., and Fernandez, E. (2004) Transgenic microalgae as green cell-factories. Trends Biotechnol. 22, 45–52.

    Article  PubMed  CAS  Google Scholar 

  17. Franklin, S. E. and Mayfield, S. P. (2005) Recent developments in the production of human therapeutic proteins in eukaryotic algae. Expert Opin. Biol. Ther. 5, 225–235.

    Article  PubMed  CAS  Google Scholar 

  18. Walker, T. L., Purton, S., Becker, D. K., and Collet, C. (2005) Microalgae as bioreactors. Plant Cell Rep. 24, 629–641.

    Article  PubMed  CAS  Google Scholar 

  19. Mayfield, S. P. and Franklin, S. E. (2005) Expression of human antibodies in eukaryotic micro-algae. Vaccine 23, 1828–1832.

    Article  PubMed  CAS  Google Scholar 

  20. Hawkins, R. L. and Nakamura, M. (1999) Expression of human growth hormone by the eukaryotic alga, Chlorella. Curr. Microbiol. 38, 335–341.

    Article  CAS  Google Scholar 

  21. Cohill, P. R. and Cannons, A. C. (2001) Transgenic Chlorella as a phytoremedial bioreactor. FASEB J. 15, A877.

    Google Scholar 

  22. Kim, D.-H., Kim, Y. T., Cho, J. J., et al. (2002) Stable integration and functional expression of flounder growth hormone gene in transformed microalga, Chlorella ellipsoidea. Marine Biotechnol. 4, 63–73.

    Article  CAS  Google Scholar 

  23. Sun, M., Qian, K., Su, N., Chang, H., Liu, J., and Chen, G. (2003) Foot-and-mouth disease virus VP1 protein fused with cholera toxin B subunit expressed in Chlamydomonas reinhardtii chloroplast. Biotechnol. Lett. 25, 1087–1092.

    Article  PubMed  CAS  Google Scholar 

  24. Mayfield, S. P., Franklin S. E., and Lerner, R. A. (2003) Expression and assembly of a fully active antibody in algae. Proc. Natl. Acad. Sci. USA 100, 438–442.

    Article  PubMed  CAS  Google Scholar 

  25. Borovsky, D. (2003) Trypsin-modulating oostatic factor: a potential new larvicide for mosquito control. J. Exp. Biol. 206, 3869–3875.

    Article  PubMed  CAS  Google Scholar 

  26. Harris, E. H. (2001) Chlamydomonas as a model organism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 363–406.

    Article  PubMed  CAS  Google Scholar 

  27. Haris, E. H. (1989) The Chlamydomonas Sourcebook: A Comprehensive Guide to Biology and Laboratory Use. Academic Press, Inc., San Diego, CA.

    Google Scholar 

  28. Fuhrmann, M. (2002) Expanding the molecular toolkit for Chlamydomonas reinhardtii: from history to new frontiers. Protist. 153, 357–364.

    Article  PubMed  Google Scholar 

  29. Shrager, J., Hauser, C., Chang, C. W., et al. (2003) Chlamydomonas reinhardtii genome project. Aguide to the generation and use of the cDNA information. Plant Physiol. 131, 401–408.

    Article  PubMed  Google Scholar 

  30. Im, C. S., Zhang, Z., Shrager, J., Chang, C. W., and Grossman, A. (2003) Analysis of light and CO2 regulation in Chlamydomonas reinhardtii using genomewide approaches. Photosyn. Res. 75, 111–125.

    Article  PubMed  CAS  Google Scholar 

  31. Eberhard, S., Jain, M., Im, C. S., et al. (2005) Generation of an oligonucleotide array for analysis of gene expression in Chlamydomonas reinhardtii. Curr. Genet. 49, 106–124.

    Article  PubMed  CAS  Google Scholar 

  32. Fuhrmann, M., Stahlberg, A., Govorunova, E., Rank, S., and Hegemann, P. (2001) The abundant retinal protein of the Chlamydomonas eye is not the photoreceptor for phototaxis and photophobic responses. J. Cell Sci. 114, 3857–3863.

    PubMed  CAS  Google Scholar 

  33. Rohr, J., Sarkar, N., Balenger, S., Jeong, B. R., and Cerutti, H. (2004) Tandem inverted repeat system for selection of effective transgenic RNAi strains in Chlamydomonas. Plant J. 40, 611–621.

    Article  PubMed  CAS  Google Scholar 

  34. Zorin, B., Hegemann, P., and Sizova, I. (2005) Nucleargene targeting by using single-stranded DNA avoids illegitimate DNA integration in Chlamydomonas reinhardtii. Eukaryot. Cell 4, 1264–1272.

    Article  PubMed  CAS  Google Scholar 

  35. Takahashi, Y., Goldschmidt-Clermont, M., Soen, S. Y., Franzen, L. G., and Rochaix, J. D. (1991) Directed chloroplast transformation in Chlamydomonas reinhardtii: insertional inactivation of the psaC gene encoding the iron sulfur protein destabilizes photosystem I. EMBO J. 10, 2033–2040.

    PubMed  CAS  Google Scholar 

  36. Kindle, K. L. (1990) High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA 87, 1228–1232.

    Article  PubMed  CAS  Google Scholar 

  37. Dunahay, T. G. (1993) Transformation of Chlamydomonas reinhardtii with silicon carbide whiskers. Biotechniques 15, 452–460.

    PubMed  CAS  Google Scholar 

  38. Tang, D. K., Qiao, S. Y., and Wu, M. (1995) Insertion mutagenesis of Chlamydomonas reinhardtii by electroporation and heterologous DNA. Biochem. Mol. Biol. 36, 1025–1035.

    CAS  Google Scholar 

  39. Shimogawara, K., Fujiwara, S., Grossman, A., and Usuda, H. (1998) High-efficiency transformation of Chlamydomonas reinhardtii by electroporation. Genetics 148, 1821–1828.

    PubMed  CAS  Google Scholar 

  40. Debuchy, R., Purton, S., and Rochaix, J. D. (1989) The argininosuccinate lyase gene of Chlamydomonas reinhardtii: an important tool for nuclear transformation and for correlating the genetic and molecular maps of the ARG7 locus. EMBO J. 8, 2803–2809.

    PubMed  CAS  Google Scholar 

  41. Boynton, J. E., Gillham, N. W., Harris, E. H., et al. (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240, 1534–1538.

    Article  PubMed  CAS  Google Scholar 

  42. Stevens, D. R., Rochaix, J. D., and Purton, S. (1996) The bacterial phleomycin resistance gene ble as a dominant selectable marker in Chlamydomonas. Mol. Gen. Genet. 251, 23–30.

    PubMed  CAS  Google Scholar 

  43. Davies, J. P., Weeks, D. P., and Grossman, A. R. (1992) Expression of the arylsulfatase gene from the beta 2-tubulin promoter in Chlamydomonas reinhardtii. Nucleic Acids Res. 20, 2959–2965.

    Article  PubMed  CAS  Google Scholar 

  44. Schroda, M., Blocker, D., and Beck, C. F. (2000) The HSP70A promoter as a tool for the improved expression of transgenes in Chlamydomonas. Plant J. 21, 121–131.

    Article  PubMed  CAS  Google Scholar 

  45. Quinn, J. M., Kropat, J., and Merchant, S. (2003) Copper response element and Crrl-dependent Ni (2+)-responsive promoter for induced, reversible gene expression in Chlamydomonas reinhardtii. Eukaryot. Cell 2, 995–1002.

    Article  PubMed  CAS  Google Scholar 

  46. Loppes, R., Radoux, M., Ohresser, M. C., and Matagne, R. F. (1999) Transcriptional regulation of the Nia1 gene encoding nitrate reductase in Chlamydomonas reinhardtii: effects of various environmental factors on the expression of a reporter gene under the control of the Nial promoter. Plant Mol. Biol. 41, 701–711.

    Article  PubMed  CAS  Google Scholar 

  47. Mayfield, S. P. and Schultz, J. (2004) Development of a luciferase reporter gene, luxCt, for Chlamydomonas reinhardtii chloroplast. Plant J. 37, 449–458.

    Article  PubMed  CAS  Google Scholar 

  48. Franklin, S., Ngo, B., Efuet, E., and Mayfield, S. P. (2002) Development of a GFP reporter gene for Chlamydomonas reinhardtii chloroplast. Plant J. 30, 733–744.

    Article  PubMed  CAS  Google Scholar 

  49. Kindle, K. L., Schnell, R. A., Fernandez, E., and Lefebvre, P. A. (1989) Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase. J. Cell Biol. 109, 2589–2601.

    Article  PubMed  CAS  Google Scholar 

  50. Ferris, P. J. (1995) Localization of the nic-7, ac-29 and thi-10 genes within the mating-type locus of Chlamydomonas reinhardtii. Genetics 141, 543–549.

    PubMed  CAS  Google Scholar 

  51. Nelson, J. A. E., Savereide, P. B., and Lefebvre, P. A. (1994) The CRY1 gene in Chlamydomonas reinhardtii: structure and use as a dominant selectable marker for nuclear transformation. Mol. Cell. Biol. 14, 4011–4019.

    PubMed  CAS  Google Scholar 

  52. Randolph-Anderson, B. L., Sato, R., Johnson, A. M., et al. (1998) Isolation and characterization of a mutant protoporphyrinogen oxidase gene from Chlamydomonas reinhardtii conferring resistance to porphyric herbicides. Plant Mol. Biol. 38, 839–859.

    Article  PubMed  CAS  Google Scholar 

  53. Kovar, J. L., Zhang, J., Funke, R. P., and Weeks, D. P. (2002) Molecular analysis of the acetolactate synthase gene of Chlamydomonas reinhardtii and development of a genetically engineered gene as a dominant selectable marker for genetic transformation. Plant J. 29, 109–117.

    Article  PubMed  CAS  Google Scholar 

  54. Lumbreras, V., Stevens, D. R., and Purton, S. (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14, 441–447.

    Article  CAS  Google Scholar 

  55. Berthold, P., Schmitt, R., and Mages, W. (2002) An engineered Streptomyces hygroscopicus aph 7" gene mediates dominant resistance against hygromycin B in Chlamydomonas reinhardtii. Protist 153, 401–412.

    Article  PubMed  CAS  Google Scholar 

  56. Sizova, I., Fuhrman, M., and Hegemann, P. (2001) A Streptomyces rimosus aphVIII gene coding for a new type phosphotransferase provides stable antibiotic resistance to Chlamydomonas reinhardtii. Gene 277, 221–229.

    Article  PubMed  CAS  Google Scholar 

  57. Goldschmidt-Clermont, M. (1991) Transgenic expression of aminoglycoside adenine transferase in the chloroplast: a selectable marker of site-directed transformation of Chlamydomonas. Nucleic Acids Res. 19, 4083–4089.

    Article  PubMed  CAS  Google Scholar 

  58. Cerutti, H., Johnson, A. M., Gillham, N. W., and Boynton, J. E. (1997) A eubacterial gene conferring spectinomycin resistance on Chlamydomonas reinhardtii: integration into the nuclear genome and gene expression Genetics 145, 97–110.

    PubMed  CAS  Google Scholar 

  59. Bateman, J. M. and Purton, S. (2000) Tools for chloroplast transformation in Chlamydomonas: expression vectors and a new dominant selectable marker. Mol. Gen. Genet. 263, 404–410.

    Article  PubMed  CAS  Google Scholar 

  60. Fuhrmann, M., Oertel, W., and Hegemann, P. (1999) A synthetic gene coding for the green fluorescent protein (GFP) is a versatile reporter in Chlamydomonas reinhardtii. Plant J. 19, 353–361.

    Article  PubMed  CAS  Google Scholar 

  61. Ruiz-Binder, N. E., Geimer, S., and Melkonian, M. (2002) In vivo localization of centrin in the green alga Chlamydomonas reinhardtii. Cell Motil. Cytoskeleton 52, 43–55.

    Article  PubMed  CAS  Google Scholar 

  62. Fuhrmann M., Hausherr, A., Ferbitz, L., Schödl, T., Heitzer, M., and Hegemann, P. (2004) Monitoring dynamic expression of neuclear genes in Chlamydomonas reinhardtii by using a synthetic luciferase reporter gene. Plant Mol. Biol. 55, 869–881.

    PubMed  CAS  Google Scholar 

  63. Minko, I. Holloway, S. P., Nikaido, S., et al. (1999) Renilla luciferase as a vital reporter for chloroplast gene expression in Chlamydomonas. Mol. Gen. Genet. 262, 421–425.

    Article  PubMed  CAS  Google Scholar 

  64. Matsuo, T., Onai, K., Okamoto, K., Minagawa, J., and Ishiura, M. (2006) Real-time monitoring of chloroplast gene expression by a luciferase reporter: evidence for nuclear regulation of chloroplast circadian period. Mol. Cell. Biol. 26, 863–870.

    Article  PubMed  CAS  Google Scholar 

  65. Pulz, O. (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl. Microbiol. Biotechnol. 57, 287–293.

    Article  PubMed  CAS  Google Scholar 

  66. Cerutti, H., Johnson, A. M., Gillham, N. W., and Boynton, J. E. (1997) Epigenetic silencing of a foreign gene in nuclear transformants of Chlamydomonas. Plant Cell 9, 925–945.

    Article  PubMed  CAS  Google Scholar 

  67. Schroda, M. (2005) RNA silencing in Chlamydomonas: mechanisms and tools. Curr. Genet. 49, 69–84.

    Article  PubMed  CAS  Google Scholar 

  68. Barnes, D., Franklin, S., Schultz, J., et al. (2005) Contribution of 5′-and 3′-untranslated regions of plastid mRNAs to the expression of Chlamydomonas reinhardtii chloroplast genes. Mol. Genet. Genomics. 274, 625–636.

    Article  PubMed  CAS  Google Scholar 

  69. Patent application US000006932980.

  70. Cai, X. H., Brown, C., Adhiya, J., Traina, S. J., and Sayre, R. (1999) Growth and heavy metal binding properties of transgenic Chlamydomonas expressing a foreign metallothionein gene. Int. J. Phytorem. 1, 53–65.

    Article  CAS  Google Scholar 

  71. Siripornadulsil, S., Traina, S., Verma, D. P., and Sayre, R. T. (2002) Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell 14, 2837–2847.

    Article  PubMed  CAS  Google Scholar 

  72. Patent application US020030022359.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Griesbeck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griesbeck, C., Kobl, I. & Heitzer, M. Chlamydomonas reinhardtii. Mol Biotechnol 34, 213–223 (2006). https://doi.org/10.1385/MB:34:2:213

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MB:34:2:213

Index Entries

Navigation