Skip to main content
Log in

Construction of human naïve fab library and characterization of anti-met fab fragment generated from the library

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Inappropriate expression of the receptor tyrosine kinase Met and its ligand hepatocyte growth factor (HGF)/scatter factor (SF) is usually associated with an aggressive solid tumor phenotype (angiogenesis, invasiveness, and metastasis) and poor clinical prognosis. We report here the design and construction of a large, human naïve antigen-binding fragment (Fab) phage-display library with a diversity of 2.0×109, which allows rapid isolation of antigen-specific human antibody fragments. A Fab fragment specifically against Met (designated hFab-Met-1) was successively selected from this library by using biopanning on Met-transfected cell line S114. The specificity of hFab-Met-1 was characterized by immunoprecipitation, Western blotting, and flow cytometry. The results demonstrate that hFab-Met-1 reacts with the extracellular domain of Met in its native conformation. Moreover, functional analysis by Madine-Darby canine kidney cell scattering and urokinase-type plasminogen activator assays demonstrated that hFab-Met-1 is not an agonist to HGF/Met signaling compared with a murine intact monoclonal antibody (MAb) Met5. To confirm that hFab-Met-1 interacts with Met-expressing tumors in vivo, I-125-labeled hFab-Met-1 was nuclear-imaged in a mouse xenograft of Met- and HGF/SF-expressing human leiomyosarcoma. Total body scintigrams were obtained between 1 and 48 h postinjection (PI). Tumor-associated activity was imaged as early as 1 h PI, and remained visible in some animals as late as 24 h PI. As expected, activity was highest in the kidneys in early images, whereas thyroid activity became predominant in later images. In conclusion, hFab-Met-1 interacts with Met both in vitro and in vivo, and is a promising candidate for clinical diagnosis and therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kohler, G. and Milstein, C. (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497.

    Article  PubMed  CAS  Google Scholar 

  2. Carter, P. (2001) Improving the efficacy of antibody-based cancer therapies. Nat. Rev. Cancer 1, 118–129.

    Article  PubMed  CAS  Google Scholar 

  3. Kim, S. J., Johnson, M., Koterba, K., Herynk, M. H., Uehara, H., and Gallick, G. E. (2003) Reduced c-Met expression by an adenovirus expressing a c-Met ribozyme inhibits tumorigenic growth and lymph node metastases of PC3-LN4 prostate tumor cells in an orthotopic nude mouse model. Clin. Cancer Res. 9, 5161–5170.

    PubMed  CAS  Google Scholar 

  4. Birchmeier, C., Birthmeier, W., Gherardi, E., and Vande Woude, G. F. (2003) MET, metastasis, motility and more. Nat. Rev. Mol. Cell Biol. 4, 915–925.

    Article  PubMed  CAS  Google Scholar 

  5. Rong, S., Bodescot, M., Blair, D., et al. (1992) Tumorigenicity of the Met proto-oncogene and the gene for hepatocyte growth factor. Mol. Cell Biol. 12, 5152–5158.

    PubMed  CAS  Google Scholar 

  6. Bladt, F., Riethmacher, D., Isenmann, S., Aguzzi, A., and Birchmeier, C. (1995) Essential role for the c-Met receptor in the migration of myogenic precursor cells into the limb bud. Nature 376, 768–771.

    Article  PubMed  CAS  Google Scholar 

  7. Burr, A. W., Toole, K., Chapman, C., Hines, J. E., and Burt, A. D. (1998) Anti-hepatocyte growth factor antibody inhibits hepatocyte proliferation during liver regeneration. J. Pathol. 185, 298–302.

    Article  PubMed  CAS  Google Scholar 

  8. Cherrington, J. M., Strawn, L. M., and Shawver, L. K. (2000) New paradigms for the treatment of cancer: the role of anti-angiogenesis agents. Adv. Cancer Res. 79, 1–38.

    Article  PubMed  CAS  Google Scholar 

  9. Ohashi, K., Marion, P. L., Nakai, H., et al. (2000) Sustained survival of human hepatocytes in mice: a model for in vivo infection with human hepatitis B and hepatitis delta viruses. Nat. Med. 6, 327–331.

    Article  PubMed  CAS  Google Scholar 

  10. Cao, B., Su, Y. L., Oskarsson, M., et al. (2001) Neutralizing monoclonal antibodies to hepatocyte growth factor/scatter factor (HGF/SF) display antitumor activity in animal models. Proc. Natl. Acad. Sci. USA 98, 7443–7448.

    Article  PubMed  CAS  Google Scholar 

  11. Nguyen, T. H., Loux, N., Dagher, I., et al. (2003) Improved gene transfer selectivity to hepatocarcinoma cells by retrovirus vector display single-chain variable fragment antibody against c-Met. Cancer Gene Ther. 10, 840–849.

    Article  PubMed  CAS  Google Scholar 

  12. Griffiths, A. D., Williams, S. C., Hartley, O., et al. (1994) Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO J. 13, 3245–3260.

    PubMed  CAS  Google Scholar 

  13. Eggena, M., Targan, S. R., Lwanczyk, L., Vidrich, A., Gordon, L. K., and Braun, J. (1996) Phage display cloning and characterization of an immunogenetic marker (perinuclear anti-neutrophil cytoplasmic antibody) in ulcerative colitis. J. Immunol. 156, 4005–4011.

    PubMed  CAS  Google Scholar 

  14. Rong, S., Oskarsson, M., Faletto D., et al. (1993) Tumorigenesis induced by coexpression of human hepatocyte growth factor and the human Met protooncogene leads to high levels of expression of the ligand and receptor. Cell Growth Differ. 4, 563–569.

    PubMed  CAS  Google Scholar 

  15. Hay, R. V., Cao, B., Skinner, R. S., et al. (2003) Radioimmunoscintigraphy of human met-expressing tumor xenografts using Met3, a new monoclonal antibody. Clin. Cancer Res. 9(10), 3839s-3844s.

    PubMed  CAS  Google Scholar 

  16. Jeffers, M., Rong, S., and Vande Woude, G. F. (1996) Enhanced tumorigenicity and invasion-metastasis by hepatocyte growth factor/scatter factor-met signaling in human cells concomitant with induction of the urokinase proteolysis network. Mol. Cell. Biol. 16, 1115–1125.

    PubMed  CAS  Google Scholar 

  17. Barbas, C. F. III, Burton, D. R., Scott, J. K., and Silverman, G. J. (2000) Phage Display: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  18. Popov, A. V., Zou, X., Xian, J., Nicholson, I. C., and Bruggemann, M. (1999) A human immunoglobulin Œa locus is similarly well expressed in mice and humans. J. Exp. Med. 189, 1611–1619.

    Article  PubMed  CAS  Google Scholar 

  19. Ridgway, J. B. B., Ng, E., Kern, J. A., et al. (1999) Identification of a human anti-CD55 single-chain Fv by subtractive panning of a phage library using tumor and nontumor cell lines. Cancer Res. 59, 2718–2723.

    PubMed  CAS  Google Scholar 

  20. Hay, R. V., Cao, B., Skinner, R. S., et al. (2002) Radioimmunoscintigraphy of tumors autocrine for human Met and hepatocyte growth factor/scatter factor. Mol. Imaging 1, 56–62.

    Article  PubMed  CAS  Google Scholar 

  21. Gross, M. D., Skinner, R. W. S., and Grossman, H. B. (1984) Radioimmunodetection of a transplantable human bladder carcinoma in a nude mouse. Invest. Radiol. 19, 530–534.

    Article  PubMed  CAS  Google Scholar 

  22. Hay, R. V., Skinner, R. S., Newman, O. C., et al. (1997) Scintigraphy of acute inflammatory lesions in rats with radiolabelled recombinant human interleukin-8. Nucl. Med. Commun. 18, 367–378.

    Article  PubMed  CAS  Google Scholar 

  23. Kipriyanov, S. M., Moldenhauer, G., and Little, M. (1997) High level production of soluble single chain antibodies in small-scale Escherichia coli cultures. J. Immunol. Methods 200, 69–77.

    Article  PubMed  CAS  Google Scholar 

  24. Shinomiya, N. and Vande Woude, G. F. (2003) Suppression of Met expression: a possible cancer treatment. Clin. Cancer Res. 9, 5085–5090.

    PubMed  CAS  Google Scholar 

  25. Abounader, R., Ranganathan, S., Lal, B., et al. (1999) Reversion of human glioblastoma malignancy by U1 small nuclear RNA/ribozyme targeting of scatter factor/hepatocyte growth factor and c-Met expression. J. Natl. Cancer Inst. 91, 1548–1556.

    Article  PubMed  CAS  Google Scholar 

  26. Matsumoto, K. and Nakamura, T. (2003) NK4 (HGF-antagonist/angiogenesis inhibitor) in cancer biology and therapeutics. Cancer Sci. 94, 321–327.

    Article  PubMed  CAS  Google Scholar 

  27. Bradbury, A. and Marks, J. D. (2004) Antibodies from phage antibody libraries. J. Immunol. Methods 290, 29–49.

    Article  PubMed  CAS  Google Scholar 

  28. Foote, J. and Winter, G. (1992) Antibody framework residues affecting the conformation of the hypervariable loops. J. Mol. Biol. 224, 487–499.

    Article  PubMed  CAS  Google Scholar 

  29. Gao, C. S., Mao, S. L., Kaufmann, G., Wirsching, P., Lerner, R. A., and Janda, K. D. (2002) A method for the generation of combinatorial antibody libraries using pIX phage display. Proc. Natl. Acad. Sci. USA 99, 12612–12616.

    Article  PubMed  CAS  Google Scholar 

  30. Rader, C. and Barbas, C. F. III. (1997) Phage display of combinatorial antibody libraries. Curr. Opin. Biotechnol. 8, 503–508.

    Article  PubMed  CAS  Google Scholar 

  31. Parren, P. W., Fisicaro, P., Labrijin, A. F., et al. (1996) In vitro antigen challenge of human antibody libraries for vaccine evaluation: the human immunodeficiency virus type 1 envelope. J. Virol. 70, 9046–9050.

    PubMed  CAS  Google Scholar 

  32. Sanna, P. P., Williamson, R. A., De Logu, A., Bloom, F. E., and Burton, D. R. (1995) Directed selection of recombinant human monoclonal antibodies to herpes simplex virus glycoproteins from phage display libraries. Proc. Natl. Acad. Sci. USA 92, 6439–6443.

    Article  PubMed  CAS  Google Scholar 

  33. Sawyer, C., Embleton, J., and Dean, C. (1997) Methodology for selection of human antibodies to membrane proteins from a phage-display library. J. Immunol. Methods, 204, 193–203.

    Article  PubMed  CAS  Google Scholar 

  34. Van Ewijk, W., de Kruif, J., Germeraad, W., et al. (1997) Subtractive isolation of phage-displayed single-chain antibodies to thymic stromal cells by using intact thymic fragments. Proc. Natl. Acad. Sci. USA 94, 3903–3908.

    Article  PubMed  Google Scholar 

  35. Andersen, P. S., Stryhn, A., Hansen, B. E., Fugger, L., Engberg, J., and Buus, S. A. (1996) A recombinant antibody with the antigen-specific, major histocompatibility complex-restricted specificity of T cells. Proc. Natl. Acad. Sci. USA 93, 1820–1824.

    Article  PubMed  CAS  Google Scholar 

  36. Cai, X. and Garen, A. (1995) Anti-melanoma antibodies from melanoma patients immunized with genetically modified autologous tumor cells: selection of specific antibodies from single-chain Fv fusion phage libraries. Proc. Natl. Acad. Sci. USA 92, 6537–6541.

    Article  PubMed  CAS  Google Scholar 

  37. de Kruif, J., Terstappen, L., Boel, E., and Logtenberg, T. (1995) Rapid selection of cell subpopulation-specific human monoclonal antibodies from a synthetic phage antibody library. Proc. Natl. Acad. Sci. USA 92, 3938–3942.

    Article  PubMed  Google Scholar 

  38. Marks, J. D., Ouwehand, W. H., Bye, J. M., et al. (1993) Human antibody fragments specific for human blood group antigens from a phage display library. Biotechnology 11, 1145–1149.

    PubMed  CAS  Google Scholar 

  39. Osbourn, J., Derbyshire, E., Vaughan, T., Field, A., and Johnson, K. (1998) Pathfinder selection: in situ isolation of novel antibodies. Immunotechnology 3, 293–302.

    Article  PubMed  CAS  Google Scholar 

  40. Siegel, D. L., Chang, T. Y., Russell, S. L., and Bunya, V. Y. (1997) Isolation of cell surface-specific human monoclonal antibodies using phage display and magnetically-activated cell sorting: applications in immunohematology. J. Immunol. Methods 206, 73–85.

    Article  PubMed  CAS  Google Scholar 

  41. Griffiths, A. D., Malmqvist, M., Marks, J. D., et al. (1993) Human anti-self antibodies with high specificity from phage display libraries. EMBO J. 12, 725–734.

    PubMed  CAS  Google Scholar 

  42. Palmer, D. B., George, A. J., and Ritter, M. A. (1997) Selection of antibodies to cell surface determinants on mouse thymic epithelial cells using a phage display library. Immunology 91, 473–478.

    Article  PubMed  CAS  Google Scholar 

  43. Poul, M. A., Becerril, B., Nielsen, U. B., Morisson, P., and Marks, J. D. (2000) Selection of tumor-specific internalizing human antibodies from phage libraries. J. Mol. Biol. 301, 1149–1161.

    Article  PubMed  CAS  Google Scholar 

  44. Heitner, T., Moor, A., Garrison, J. L., Marks, C., Hasan, T., and Marks, J. D. (2001) Selection of cell binding and internalizing epidermal growth factor receptor antibodies from a phage display library. J. Immunol. Methods 248, 17–30.

    Article  PubMed  CAS  Google Scholar 

  45. Liu, B., Conrad, F., Cooperberg, M. R., Kirpotin, D. B., and Mark, J. D. (2004) Mapping tumor epitope space by direct selection of single-chain Fv antibody libraries on prostate cancer cells. Cancer Res. 64, 704–710.

    Article  PubMed  CAS  Google Scholar 

  46. Ditzel, H. J., Binley, J. M., Moore, J. P., et al. (1995) Neutralizing recombinant human antibodies to a conformational V2- and CD4-binding site-sensitive epitope of HIV-1 gp120 isolated by using an epitope-masking procedure. J. Immunol. 154, 893–906.

    PubMed  CAS  Google Scholar 

  47. Sutherland, R., Buchegger, F., Schreyer, M., Vacca, A., and Mach, J. P. (1987) Penetration and binding of radiolabeled anti-carcinoembryonic antigen monoclonal antibodies and their antigen binding fragments in human colon multicellular tumor spheroids. Cancer Res. 47(6), 1627–1633.

    PubMed  CAS  Google Scholar 

  48. Langmuir, V. K., McGann, J. K., Buchegger, F., and Sutherland, R. M. (1991) The effect of antigen concentration, antibody valency and size, and tumor architecture on antibody binding in multicell spheroids. Int. J. Rad. Appl. Instrum. B. 18, 753–764.

    PubMed  CAS  Google Scholar 

  49. Hay R. V., Cao, B., Skinner, R. S., et al. (2003) Met5, a new monoclonal antibody for radioimmunoscintigraphy of met-expressing tumors. J. Nucleic Med. 44, 178P.

    Google Scholar 

  50. Lambert, B., Cybulla, M., Weiner, S. M., et al. (2004) Renal toxicity after radionuclide therapy. Radiat. Res. 161, 607–611.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Cao.

Additional information

These two authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiao, Y., Zhao, P., Zhu, J. et al. Construction of human naïve fab library and characterization of anti-met fab fragment generated from the library. Mol Biotechnol 31, 41–54 (2005). https://doi.org/10.1385/MB:31:1:041

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MB:31:1:041

Index Entries

Navigation