Skip to main content
Log in

Microarray and real-time PCR analyses of gene expression in the honeybee brain following caffeine treatment

  • Original Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

To test the idea that caffeine might induce changes in gene expression in the honeybee brain, we contrasted the transcriptional profiles of control and caffeine-treated brains using high-throughput cDNA microarrays. Additional quantitative real-time PCR was performed on a subset of eight transcripts to visualize the temporal changes induced by caffeine. Genes that were significantly upregulated in caffeine-treated brains included those involved in synaptic signaling (GABA:Na symporter, dopamine D2R-like receptor, and synapsin), cytoskeletal modifications (kinesin and microtubule motors), protein translation (ribosomal protein RpL4, elongation factors), and calcium-dependent processes (calcium transporter, calmodulin-dependent cyclic nucleotide phosphodiesterase). In addition, our study uncovered a number of novel, caffeine-inducible genes that appear to be unique to the honeybee. Time-dependent profiling of caffeine-sensitive gene expression shows significant upregulation 1 h after treatment followed by moderate downregulation after 4 h with no additional changes occuring after 24 h. Our results provide initial evidence that the dopaminergic system and calcium exchange are the main targets of caffeine in the honeybee brain and suggest that molecular responses to caffeine in an invertebrate brain are similar to those in vertebrate organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Beggs K. T., Hamilton I. S., Kurshan P. T., Mustard J. A., Mercer A. R. (2005) Characterization of a D2-like dopamine receptor (AmDOP3) in honeybees, Apis mellifera. Insect Biochem. Mol. Biol. 35, 873–882.

    Article  PubMed  CAS  Google Scholar 

  • Carillo R. and Gibson G. (2002) Unusual genetic architecture of natural variation affecting drug resistance in Drosophila melanogaster. Genet. Res. 80, 205–213.

    Article  Google Scholar 

  • Ein-Dor L., Kela I., Getz G., Givol D., and Domany E. (2005) Outcome signature genes in breast cancer: is there a unique set? Bioinformatics 21, 171–178.

    Article  PubMed  CAS  Google Scholar 

  • Grozinger C. M., Sharabash N. M., Whitfield C. W., and Robinson G. E. (2003) Pheromone-mediated gene expression in the honey bee brain. Proc. Natl. Acad. Sci. U. S. A. 100(Suppl. 2), 14,519–14,525.

    CAS  Google Scholar 

  • Honey Bee Genome Project (HBGP) (2004) www.nature.com/nsu/040105/040105-7.html

  • Iwata S. I., Hewlett G. H., Ferrell S. T., Kantor L., and Gnegy M. E. (1997) Enhanced dopamine release and phosphorylation of synapsin I and neuromodulin in striatal synaptosomes after repeated amphetamine. J. Pharmacol. Exp. Ther. 283(3), 1445–1452.

    PubMed  CAS  Google Scholar 

  • Kothapalli R., Yoder S. J., Mane S., and Loughran T. P. Jr. (2002) Microarray results: how accurate are they? BMC Bioinformatics 3, 22–31.

    Article  PubMed  Google Scholar 

  • Kopf S. R., Melani A., Pedata F., and Pepeu G. (1999) A denosine and memory storage: effect of A(1) and A(2) receptor antagonists. Psychopharmacology (Berl.) 146, 214–219.

    Article  CAS  Google Scholar 

  • Korkotian E. and Segal M. (1999) Release of calcium from stores alters the morphology of dendritic spines in cultured hippocampal neurons. Proc. Natl. Acad. Sci. U. S. A. 96, 12,068–12,072.

    Article  CAS  Google Scholar 

  • Kucharski R. and Maleszka R. (1998) Arginine Kinase is highly expressed in the compound eye of the honeybee, Apis mellifera. Gene. 211, 343–349.

    Article  PubMed  CAS  Google Scholar 

  • Kucharski R. and Maleszka R. (2002) Evaluation of differential gene expression during behavioral development in the honeybee using microarrays and northern blots. Genome Biol. 3, Research 7.1–7.9.

    Google Scholar 

  • Kucharski R. and Maleszka R. (2003) Transcriptional profiling reveals multifunctional roles for transferrin in the honeybee (Apis mellifera). J. Insect Sci. 3, 27–36.

    PubMed  CAS  Google Scholar 

  • Lindskog M., Svenningsson P., Pozzi L., Kim Y., Fienberg A. A., Bibb J. A., et al. (2002) Involvement of DARPP-32 phosphorylation in the stimulant action of caffeine. Nature 418, 774–778.

    Article  PubMed  CAS  Google Scholar 

  • Lorist M. M. and Tops M. (2003) Caffeine, fatigue, and cognition. Brain Cogn. 53, 82–94.

    Article  PubMed  Google Scholar 

  • Miklos G. L. G. and Maleszka R. (2004) Microarray reality checks in the context of a complex disease. Nat. Biotechnol. 22, 615–621.

    Article  PubMed  CAS  Google Scholar 

  • Mirnics K. (2001) Microarrays in brain research: the good, the bad and the ugly. Nat. Rev. Neurosci. 2, 444–447.

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl M. W. (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45.

    Google Scholar 

  • Pongrac J., Middleton F. A., Lewis D. A., Levitt P., and Mirnics K. (2002) Gene expression profiling with DNA microarrays: advancing our understanding of psychiatric disorders. Neurochem. Res. 27, 1049–1063.

    Article  PubMed  CAS  Google Scholar 

  • Scott R., Bourtchuladze R., Gossweiler S., Dubnau J., and Tully T. (2002) CREB and the discovery of cognitive enhancers. J. Mol. Neurosci. 19, 171–177.

    Article  PubMed  CAS  Google Scholar 

  • Schwarzschild M. A., Chen J. F., and Ascherio A. (2002) Caffeinated clues and the promise of adenosine A(2A) antagonists in PD. Neurology 58, 1154–1160.

    PubMed  CAS  Google Scholar 

  • Stonehouse A. H., Adachi M., Walcott E. C., and Jones F. S. (2003) Caffeine regulates neuronal expression of the dopamine 2 receptor gene. Mol. Pharmacol. 64(6), 1,463–1,473.

    Article  CAS  Google Scholar 

  • Vawter M. P., Barrett T., Cheadle C., Sokolov B. P., Wood W. H. III, Donovan D. M., et al. (2001) Application of cDNA microarrays to examine gene expression differences in schizophrenia. Brain Res. Bull. 55, 641–650.

    Article  PubMed  CAS  Google Scholar 

  • Walaas S. I., Sedvall G., and Greengard P. (1989) Dopamine-regulated phosphorylation of synaptic vesicle-associated proteins in rat neostriatum and substantia nigra. Neuroscience 29(1), 9–19.

    Article  PubMed  CAS  Google Scholar 

  • Whitfield C. W., Band M. R., Bonaldo M. F., Kumar C. G., Liu L., Pardinas J. R., et al. (2002) Annotated expressed sequence tags and cDNA microarrays for studies of brain and behavior in the honey bee. Genome Res. 12, 555–566.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryszard Maleszka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kucharski, R., Maleszka, R. Microarray and real-time PCR analyses of gene expression in the honeybee brain following caffeine treatment. J Mol Neurosci 27, 269–276 (2005). https://doi.org/10.1385/JMN:27:3:269

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:27:3:269

Index Entries

Navigation