Skip to main content
Log in

Signaling cascades involved in neuroprotection by subpicomolar pituitary adenylate cyclase-activating polypeptide 38

  • Original Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

In neuronal/glial cocultures, pituitary adenylate cyclase-activating polypeptide 38 (PACAP38) prevented neuronal death induced by gp120, lipopolysaccharide (LPS), or other toxic agents, but the dose response of the neuroprotective effect is bimodal, with a peak at a subpicomolar concentration and another peak at a subnanomolar to nanomolar concentration. Although the signaling cascade involved in neuroprotection by nanomolar concentration of the peptide has been shown to be mediated by activation of cAMP-dependent protein kinase and subsequent activation of mitogen-activated protein kinase (MAPK), the mechanism for neuroprotection by a subpicomolar level of PACAP38 remains elusive. In the present study, the signaling involved in neuroprotection by subpicomolar PACAP38 was studied in rat neuronal/glial cocultures. Addition of PACAP38 stimulated expression and activation of extracellular signal-related kinase-type MAPK with a peak response at 10−13 M; greater concentrations of the peptide induced lesser response. cAMP production also increased at subpicomolar levels of PACAP38, but the level remained unchanged at a level four to five times higher than the base level at concentration below 10−11 M. cAMP then started increasing again dose-dependently in a range >10−11 MPACAP38. Lipopolysaccharide (LPS)-induced neuronal death, indicated by increased release of neuronspecific enolase, was suppressed by PACAP38 in a bimodal fashion. Neuroprotection by 10−12 M PACAP38 was completely abolished by a MAPK kinase-1 inhibitor, PD98059, and also partially suppressed by Rp-cAMP, a cAMP-dependent protein kinase inhibitor. Moreover, neuroprotection by a nanomolar level of PACAP38 was completely suppressed by Rp-cAMP but not affected by PD98059. We conclude that neuroprotection by subpicomolar PACAP38 is mainly mediated by the signaling pathway involving MAPK activation and partially regulated by cAMP-dependent protein kinase activation. Furthermore, PACAP38 stimulated expression of activity-dependent neuroprotective protein (ADNP), with a peak at 10−13 M. Greater doses of the peptide induced lesser response. However, 10−13 M PACAP38-stimulated expression of ADNP was not affected by PD98059. This suggests that neuroprotection by subpicomolar PACA38 might be mediated partially by expression of ADNP, but the major events for neuroprotection by subpicomolar PACAP38 remain to be identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arimura A., Somogyvari-Vigh A., Weill C., Fiore R. C., Tatsuno I., Bay V., and Brenneman D. E. (1994) PACAP functions as a neurotrophic factor. Ann. N. Y. Acad. Sci. 739, 228–243.

    Article  PubMed  CAS  Google Scholar 

  • Ashur-Fabian O., Giladi E., Brenneman D. E., and Gozes I. (1997) Identification of VIP/PACAP receptors on rat astrocytes using antisense oligodeoxynucleotides. J. Mol. Neurosci. 9, 211–222.

    Article  PubMed  CAS  Google Scholar 

  • Barrie A. P., Clohessy A. M., Buensuceso C. S., Rogers M. V., and Allen J. M. (1997) Pituitary adenylyl cyclaseactivating peptide stimulates extracellular signalregulated kinase 1 or 2 (ERK1/2) activity in a Rasindependent, mitogen-activated protein kinase/ERK kinase 1 or 2-dependent manner in PC12 cells. J. Biol. Chem. 272, 19666–19671.

    Article  PubMed  CAS  Google Scholar 

  • Bassan M., Zamostiano R., Davidson A., Pinhasov A., Giladi E., Perl O., et al. (1999) Complete sequence of a novel protein containing a femtomolar-activity-dependent neuroprotective peptide. J. Neurochem. 72, 1283–1293.

    Article  PubMed  CAS  Google Scholar 

  • Bassan M., Zamostiano R., Giladi E., Davidson A., Wollman Y., Pitman J., et al. (1998) The identification of secreted heat shock 60-like protein from rat glial cells and a human neuroblastoma cell line. Neurosci. Lett. 250, 37–40.

    Article  PubMed  CAS  Google Scholar 

  • Beaudet M. M., Braas K. M., and May V. (1998) Pituitary adenylate cyclase activating polypeptide (PACAP) expression in sympathetic preganglionic projection neurons to the superior cervical ganglion. J. Neurobiol. 36, 325–336.

    Article  PubMed  CAS  Google Scholar 

  • Beni-Adani L., Gozes I., Cohen Y., Assaf Y., Steingart R. A., Brenneman D. E., et al. (2001) A peptide derived from activity-dependent neuroprotective protein (ADNP) ameliorates injury response in closed head injury in mice. J. Pharmacol. Exp. Ther. 296, 57–63.

    PubMed  CAS  Google Scholar 

  • Boeshore K. L., Schreiber R. C., Vaccariello S. A., Sachs H. H., Salazar R., Lee J., et al. (2004) Novel changes in gene expression following axotomy of a sympathetic ganglion: a microarray analysis. J. Neurobiol. 59, 216–235.

    Article  PubMed  CAS  Google Scholar 

  • Bouschet T., Perez V., Fernandez C., Bockaert J., Eychene A., and Journot L. (2003) Stimulation of the ERK pathway by GTP-loaded Rap1 requires the concomitant activation of Ras, protein kinase C, and protein kinase A in neuronal cells. J. Biol. Chem. 278, 4778–4785.

    Article  PubMed  CAS  Google Scholar 

  • Brenneman D. E. and Gozes I. (1996) A femtomolar-acting neuroprotective peptide. J. Clin. Invest. 97, 2299–2307.

    Article  PubMed  CAS  Google Scholar 

  • Brenneman D. E., Hauser J., Neale E., Rubinraut S., Fridkin M., Davidson A., and Gozes I. (1998) Activity-dependent neurotrophic factor: structure-activity relationships of femtomolar-acting peptides. J. Pharmacol. Exp. Ther. 285, 619–627.

    PubMed  CAS  Google Scholar 

  • Brenneman D. E., Hauser J. M., Spong C., and Phillips T. M. (2002) Chemokine release is associated with the protective action of PACAP-38 against HIV envelope protein neurotoxicity. Neuropeptides 36, 271–280.

    Article  PubMed  CAS  Google Scholar 

  • Brenneman D. E., Neale E. A., Foster G. A., d’Autremont S. W., and Westbrook G. L. (1987) Nonneuronal cells mediate neurotrophic action of vasoactive intestinal peptide. J. Cell Biol. 104, 1603–1610.

    Article  PubMed  CAS  Google Scholar 

  • Brenneman D. E., Spong C. Y., and Gozes I. (2000) Protective peptides derived from novel glial proteins. Biochem. Soc. Trans. 28, 452–455.

    Article  PubMed  CAS  Google Scholar 

  • Brenneman D. E., Westbrook G. L., Fitzgerald S. P., Ennist D. L., Elkins K. L., Ruff M. R., and Pert C. B. (1988) Neuronal cell killing by the envelope protein of HIV and its prevention by vasoactive intestinal peptide. Nature 335, 639–642.

    Article  PubMed  CAS  Google Scholar 

  • Busca R., Abbe P., Mantoux F., Aberdam E., Peyssonnaux C., Eychene A., et al. (2000) Ras mediates the cAMP-dependent activation of extracellular signal-regulated kinases (ERKs) in melanocytes. EMBO J. 19, 2900–2910.

    Article  PubMed  CAS  Google Scholar 

  • Delgado M., Leceta J., and Ganea D. (2003) Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit the production of inflammatory mediators by activated microglia. J. Leukoc. Biol. 73, 155–164.

    Article  PubMed  CAS  Google Scholar 

  • DiCicco-Bloom E., Deutsch P. J., Maltzman J., Zhang J., Pintar J. E., Zheng J., et al. (2000) Autocrine expression and ontogenetic functions of the PACAP ligand/receptor system during sympathetic development. Dev. Biol. 219, 197–213.

    Article  PubMed  CAS  Google Scholar 

  • Dugan L. L., Kim J. S., Zhang Y., Bart R. D., Sun Y., Holtzman D. M., and Gutmann D. H. (1999) Differential effects of cAMP in neurons and astrocytes. Role of B-raf. J. Biol. Chem. 274, 25842–25848.

    Article  PubMed  CAS  Google Scholar 

  • Frechilla D., Garcia-Osta A., Palacios S., Cenarruzabeitia E., and Del Rio J. (2001) BDNF mediates the neuroprotective effect of PACAP-38 on rat cortical neurons. Neuroreport 12, 919–923.

    Article  PubMed  CAS  Google Scholar 

  • Furman S., Hill J. M., Vulih I., Zaltzman R., Hauser J. M., Brenneman D. E., and Gozes I. (2005) Sexual dimorphism of activity-dependent neuroprotective protein in the mouse arcuate nucleus. Neurosci. Lett. 373, 73–78.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez B. J., Basille M., Vaudry D., Fournier A., and Vaudry H. (1997) Pituitary adenylate cyclase-activating polypeptide promotes cell survival and neurite outgrowth in rat cerebellar neuroblasts. Neuroscience 78, 419–430.

    Article  PubMed  CAS  Google Scholar 

  • Gottschall P. E., Katsuura G., Dahl R. R., Hoffmann S. T., and Arimura A. (1988) Discordance in the effects of interleukin-1 on rat granulosa cell differentiation induced by follicle-stimulating hormone or activators of adenylate cyclase. Biol. Reprod. 39, 1074–1085.

    Article  PubMed  CAS  Google Scholar 

  • Gottschall P. E., Tatsuno I., and Arimura A. (1994) Regulation of interleukin-6 (IL-6) secretion in primary cultured rat astrocytes: synergism of interleukin-1 (IL-1) and pituitary adenylate cyclase activating polypeptide (PACAP). Brain Res. 637, 197–203.

    Article  PubMed  CAS  Google Scholar 

  • Gozes I., Bassan M., Zamostiano R., Pinhasov A., Davidson A., Giladi E., et al. (1999) A novel signaling molecule for neuropeptide action: activity-dependent neuroprotective protein. Ann. N. Y. Acad. Sci. 897, 125–135.

    Article  PubMed  CAS  Google Scholar 

  • Gozes I., Giladi E., Pinhasov A., Bardea A., and Brenneman D. E. (2000) Activity-dependent neurotrophic factor: intranasal administration of femotomolar-acting peptides improve performance in a water maze. J. Pharmacol. Exp. Ther. 293, 1091–1098.

    PubMed  CAS  Google Scholar 

  • Gozes I., McCune S. K., Jacobson L., Warren D., Moody T. W., Fridkin M., and Brenneman D. E. (1991) An antagonist to vasoactive intestinal peptide affects cellular functions in the central nervous system. J. Pharmacol. Exp. Ther. 257, 959–966.

    PubMed  CAS  Google Scholar 

  • Grimaldi M. and Cavallaro S. (1999) Functional and molecular diversity of PACAP/VIP receptors in cortical neurons and type I astrocytes. Eur. J. Neurosci. 11, 2767–2772.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto H., Kunugi A., Arakawa N., Shintani N., Fujita T., Kasai A., et al. (2003) Possible involvement of a cyclic AMP-dependent mechanism in PACAP-induced proliferation and ERK activation in astrocytes. Biochem. Biophys. Res. Commun. 311, 337–343.

    Article  PubMed  CAS  Google Scholar 

  • Hernandez A., Kimball B., Romanchuk G., and Mulholland M. W. (1995) Pituitary adenylate cyclase-activating peptide stimulates neurite growth in PC12 cells. Peptides 16, 927–932.

    Article  PubMed  CAS  Google Scholar 

  • Jamen F., Bouschet T., Laden J. C., Bockaert J., and Brabet P. (2002) Up-regulation of the PACAP type-1 receptor (PAC1) promoter by neurotrophins in rat PC12 cells and mouse cerebellar granule cells via the Ras/mitogen-activated protein kinase cascade. J. Neurochem. 82, 1199–1207.

    Article  PubMed  CAS  Google Scholar 

  • Journot L., Villalba M., and Bockaert J. (1998) PACAP-38 protects cerebellar granule cells from apoptosis. Ann. N. Y. Acad. Sci. 865, 100–110.

    Article  PubMed  CAS  Google Scholar 

  • Kao S., Jaiswal R. K., Kolch W., and Landreth G. E. (2001) Identification of the mechanisms regulating the differential activation of the MAPK cascade by epidermal growth factor and nerve growth factor in PC12 cells. J. Biol. Chem. 276, 18169–18177.

    Article  PubMed  CAS  Google Scholar 

  • Kienlen Campard P., Crochemore C., Rene F., Monnier D., Koch B., and Loeffler J. P. (1997) PACAP type I receptor activation promotes cerebellar neuron survival through the cAMP/PKA signaling pathway. DNA Cell Biol. 16, 323–333.

    Article  PubMed  CAS  Google Scholar 

  • Kim W. K., Kan Y., Ganea D., Hart R. P., Gozes I., and Jonakait G. M. (2000) Vasoactive intestinal peptide and pituitary adenylyl cyclase-activating polypeptide inhibit tumor necrosis factor-alpha production in injured spinal cord and in activated microglia via a cAMP-dependent pathway. J. Neurosci. 20, 3622–3630.

    PubMed  CAS  Google Scholar 

  • Kong L. Y., Maderdrut J. L., Jeohn G. H., and Hong J. S. (1999) Reduction of lipopolysaccharide-induced neurotoxicity in mixed cortical neuron/glia cultures by femtomolar concentrations of pituitary adenylate cyclase-activating polypeptide. Neuroscience 91, 493–500.

    Article  PubMed  CAS  Google Scholar 

  • Lazarovici P., Jiang H., and Fink D. Jr. (1998) The 38-aminoacid form of pituitary adenylate cyclase-activating polypeptide induces neurite outgrowth in PC12 cells that is dependent on protein kinase C and extracellular signal-regulated kinase but not on protein kinase A, nerve growth factor receptor tyrosine kinase, p21(ras) G protein, and pp60(c-src) cytoplasmic tyrosine kinase. Mol. Pharmacol. 54, 547–558.

    PubMed  CAS  Google Scholar 

  • Leker R. R., Teichner A., Grigoriadis N., Ovadia H., Brenneman D. E., Fridkin M., et al. (2002) NAP, a femotomolar-acting peptide, protects the brain against ischemic injury by reducing apoptotic death. Stroke 33, 1085–92.

    Article  PubMed  CAS  Google Scholar 

  • May V., Beaudet M. M., Parsons R. L., Hardwick J. C., Gauthier E. A., Durda J. P., and Braas K. M. (1998) Mechanisms of pituitary adenylate cyclase activating polypeptide (PACAP)-induced depolarization of sympathetic superior cervical ganglion (SCG) neurons. Ann. N. Y. Acad. Sci. 865, 164–175.

    Article  PubMed  CAS  Google Scholar 

  • Miyata A., Arimura A., Dahl R. R., Minamino N., Uehara A., Jiang L., et al. (1989) Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem. Biophys. Res. Commun. 164, 567–574.

    Article  PubMed  CAS  Google Scholar 

  • Miyata A., Jiang L., Dahl R. D., Kitada C., Kubo M., Fujono M., et al. (1990) Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the pituitary adenylate cyclase activating polypeptide with 38 residues (PACAP38). Biochem. Biophys. Res. Commun. 170, 643–648.

    Article  PubMed  CAS  Google Scholar 

  • Morio H., Tatsuno I., Hirai A., Tamura Y., and Saito Y. (1996a) Pituitary adenylate cyclase-activating polypeptide protects rat-cultured cortical neurons from glutamate-induced cytotoxicity. Brain Res. 741, 82–88.

    Article  PubMed  CAS  Google Scholar 

  • Morio H., Tatsuno I., Tanaka T., Uchida D., Hirai A., Tamura Y., and Saito Y. (1996b) Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neurotrophic factor for cultured rat cortical neurons. Ann. N. Y. Acad. Sci. 805, 476–481.

    Article  PubMed  CAS  Google Scholar 

  • Moroo I., Tatsuno I., Uchida D., Tanaka T., Saito J., Saito Y., and Hirai A. (1998) Pituitary adenylate cyclase activating polypeptide (PACAP) stimulates mitogenactivated protein kinase (MAPK) in cultured rat astrocytes. Brain Res. 795, 191–196.

    Article  PubMed  CAS  Google Scholar 

  • Morozov A., Muzzio I. A., Bourtchouladze R., Van-Strien N., Lapidus K., Yin D., et al. (2003) Rap1 couples cAMP signaling to a distinct pool of p42/44MAPK regulating excitability, synaptic plasticity, learning, and memory. Neuron 39, 309–325.

    Article  PubMed  CAS  Google Scholar 

  • Offen D., Sherki Y., Melamed E., Fridkin M., Brenneman D. E., and Gozes I. (2000) Vasoactive intestinal peptide (VIP) prevents neurotoxicity in neuronal cultures: relevance to neuroprotection in Parkinson’s disease. Brain Res. 854, 257–262.

    Article  PubMed  CAS  Google Scholar 

  • Ohtaki H., Dohi K., Yofu S., Nakamachi T., Kudo Y., Endo S., et al. (2004) Effect of pituitary adenylate cyclaseactivating polypeptide 38 (PACAP38) on tissue oxygen content-Treatment in central nervous system of mice. Regul. Pept. 123, 61–67.

    Article  PubMed  CAS  Google Scholar 

  • Onoue S., Endo K., Ohshima K., Yajima T., and Kashimoto K. (2002) The neuropeptide PACAP attenuates betaamyloid (1–42)-induced toxicity in PC12 cells. Peptides 23, 1471–1478.

    Article  PubMed  CAS  Google Scholar 

  • Pinhasov A., Mandel S., Torchinsky A., Giladi E., Pittel Z., Goldsweig A.M., et al. (2003) Activity-dependent neuroprotective protein: a novel gene essential for brain formation. Brain Res. Dev. Brain Res. 144, 83–90.

    Article  PubMed  CAS  Google Scholar 

  • Reglodi D., Fabian Z., Tamas A., Lubics A., Szeberenyi J., Alexy T., et al. (2004) Effects of PACAP on in vitro and in vivo neuronal cell death, platelet aggregation, and production of reactive oxygen radicals. Regul. Pept. 123, 51–59.

    Article  PubMed  CAS  Google Scholar 

  • Romano D., Magalon K., Ciampini A., Talet C., Enjalbert A., and Gerard C. (2003) Differential involvement of the Ras and Rap1 small GTPases in vasoactive intestinal and pituitary adenylyl cyclase activating polypeptides control of the prolactin gene. J. Biol. Chem. 278, 51386–51394.

    Article  PubMed  CAS  Google Scholar 

  • Sandgren K., Lin Z., and Ekblad E. (2003) Differential effects of VIP and PACAP on survival of cultured adult rat myenteric neurons. Regul. Pept. 111, 211–217.

    Article  PubMed  CAS  Google Scholar 

  • Seidel M. G., Klinger M., Freissmuth M., and Holler C. (1999) Activation of mitogen-activated protein kinase by the A(2A)-adenosine receptor via a rap1-dependent and via a p21(ras)-dependent pathway. J. Biol. Chem. 274, 25833–25841.

    Article  PubMed  CAS  Google Scholar 

  • Shioda S., Ohtaki H., Suzuki R., Nakamachi T., Takenoya F., Dohi K., and Nakajo S. (2004) Prevention of delayed neuronal cell death by PACAP and its molecular mechanism. Nippon Yakurigaku Zasshi 123, 243–252.

    PubMed  CAS  Google Scholar 

  • Sigalov E., Fridkin M., Brenneman D. E., and Gozes I. (2000) VIP-related protection against iodoacetate toxicity in pheochromocytoma (PC12) cells: a model for ischemic/hypoxic injury. J. Mol. Neurosci. 15, 147–154.

    Article  PubMed  CAS  Google Scholar 

  • Stork P. J. (2003) Does Rap1 deserve a bad Rap? Trends Biochem. Sci. 28, 267–275.

    Article  PubMed  CAS  Google Scholar 

  • Suk K., Park J. H., and Lee W. H. (2004) Neuropeptide PACAP inhibits hypoxic activation of brain microglia: a protective mechanism against microglial neurotoxicity in ischemia. Brain Res. 1026, 151–156.

    Article  PubMed  CAS  Google Scholar 

  • Tatsuno I., Morio H., Tanaka T., Hirai A., Tamura Y., Saito Y., and Arimura A. (1996a) Astrocytes are one of the main target cells for pituitary adenylate cyclase-activating polypeptide in the central nervous system. Astrocytes are very heterogeneous regarding both basal movement of intracellular free calcium ([Ca2+]i) and the [Ca2+]i response to PACAP at a single cell level. Ann. N. Y. Acad. Sci. 805, 613–619.

    Article  PubMed  CAS  Google Scholar 

  • Tatsuno I., Morio H., Tanaka T., Uchida D., Hirai A., Tamura Y., and Saito Y. (1996b) Pituitary adenylate cyclase-activating polypeptide (PACAP) is a regulator of astrocytes: PACAP stimulates proliferation and production of interleukin 6 (IL-6), but not nerve growth factor (NGF), in cultured rat astrocyte. Ann. N. Y. Acad. Sci. 805, 482–488.

    Article  PubMed  CAS  Google Scholar 

  • Vaudry D., Falluel-Morel A., Basille M., Pamantung T.F., Fontaine M., Fournier A., et al. (2003) Pituitary adenylate cyclase-activating polypeptide prevents C2-ceramide-induced apoptosis of cerebellar granule cells. J. Neurosci. Res. 72, 303–316.

    Article  PubMed  CAS  Google Scholar 

  • Vaudry D., Gonzalez B. J., Basille M., Pamantung T. F., Fontaine M., Fournier A., and Vaudry H. (2000) The neuroprotective effect of pituitary adenylate cyclaseactivating polypeptide on cerebellar granule cells is mediated through inhibition of the CED3-related cysteine protease caspase-3/CPP32. Proc. Natl. Acad. Sci. U. S. A. 97, 13390–13395.

    Article  PubMed  CAS  Google Scholar 

  • Vaudry D., Pamantung T. F., Basille M., Rousselle C., Fournier A., Vaudry H., et al. (2002a) PACAP protects cerebellar granule neurons against oxidative stress-induced apoptosis. Eur. J. Neurosci. 15, 1451–1460.

    Article  PubMed  CAS  Google Scholar 

  • Vaudry D., Stork P. J., Lazarovici P., and Eiden L. E. (2002b) Signaling pathways for PC12 cell differentiation: making the right connections. Science 296, 1648,1649.

    Article  PubMed  CAS  Google Scholar 

  • Villalba M., Bockaert J., and Journot L. (1997) Pituitary adenylate cyclase-activating polypeptide (PACAP-38) protects cerebellar granule neurons from apoptosis by activating the mitogen-activated protein kinase (MAP kinase) pathway. J. Neurosci. 17, 83–90.

    PubMed  CAS  Google Scholar 

  • York R. D., Yao H., Dillon T., Ellig C. L., Eckert S. P., McCleskey E. W., and Stork P. J. (1998) Rap1 mediates sustained MAP kinase activation induced by nerve growth factor. Nature 392, 622–626.

    Article  PubMed  CAS  Google Scholar 

  • Zaltzman R., Alexandrovich A., Beni S. M., Trembovler V., Shohami E., and Gozes I. (2004) Brain injury-dependent expression of activity-dependent neuroprotective protein. J. Mol. Neurosci. 24, 181–187.

    Article  PubMed  CAS  Google Scholar 

  • Zamostiano R., Pinhasov A., Gelber E., Steingart R. A., Seroussi E., Giladi E., et al. (2001) Cloning and characterization of the human activity-dependent neuroprotective protein. J. Biol. Chem. 276, 708–714.

    Article  PubMed  CAS  Google Scholar 

  • Zemlyak I., Furman S., Brenneman D. E. and Gozes I. (2000) A novel peptide prevents death in enriched neuronal cultures. Regul. Pept. 96, 39–43.

    Article  PubMed  CAS  Google Scholar 

  • Zusev M. and Gozes I. (2004) Differential regulation of activity-dependent neuroprotective protein in rat astrocytes by VIP and PACAP. Regul. Pept. 123, 33–41.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Arimura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M., David, C., Kikuta, T. et al. Signaling cascades involved in neuroprotection by subpicomolar pituitary adenylate cyclase-activating polypeptide 38. J Mol Neurosci 27, 91–105 (2005). https://doi.org/10.1385/JMN:27:1:091

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:27:1:091

Index Entries

Navigation