Skip to main content
Log in

α-synuclein budding yeast model

Toxicity enhanced by impaired proteasome and oxidative stress

  • Original Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Parkinson's disease (PD) is a common neurodegenerative disorder that results from the selective loss of midbrain dopaminergic neurons. Misfolding and aggregation of the protein α-synuclein, oxidative damage, and proteasomal impairment are all hypotheses for the molecular cause of this selective neurotoxicity. Here, we describe a Saccharomyces cerevisiae model to evaluate the misfolding, aggregation, and toxicity-inducing ability of wild-type α-synuclein and three mutants (A30P, A53T, and A30P/A53T), and we compare regulation of these properties by dysfunctional proteasomes and by oxidative stress. We found prominent localization of wild-type and A53T α-synuclein near the plasma membrane, supporting known in vitro lipid-binding ability. In contrast, A30P was mostly cytoplasmic, whereas A30P/A53T displayed both types of fluorescence. Surprisingly, α-synuclein was not toxic to several yeast strains tested. When yeast mutants for the proteasomal barrel (doa3-1) were evaluated, delayed α-synuclein synthesis and membrane association were observed; yeast mutant for the proteasomal cap (sen3-1) exhibited increased accumulation and aggregation of α-synuclein. Both sen3-1 and doa3-1 mutants exhibited synthetic lethality with α-synuclein. When yeasts were challenged with an oxidant (hydrogen peroxide), α-synuclein was extremely lethal to cells that lacked managanese superoxide dismutase Mn-SOD (sod2Δ) but not to cells that lacked copper, zinc superoxide dismutase Cu,Zn-SOD (sod1Δ). Despite the toxicity, sod2Δ cells never displayed intracellular aggregates of α-synuclein. We suggest that the toxic α-synuclein species in yeast are smaller than the visible aggregates, and toxicity might involve α-synuclein membrane association. Thus, yeasts have emerged effective organisms for characterizing factors and mechanisms that regulate α-synuclein toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abeliovich A., Schmitz Y., Farinas I., Choi-Lundber D., Wei-Hsien H., Castillo P. E., et al. (2000) Mice lacking α-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 25, 239–252.

    Article  PubMed  CAS  Google Scholar 

  • Alim M. A., Ma Q. L., Takeda K., Aizawa T., Matsubara M., Nakamura M., et al. (2004) Demonstration of a role for alpha-synuclein as a functional microtubule-associated protein. J. Alzheimer's Dis. 6, 435–449.

    Google Scholar 

  • Andreassen O. A., Ferrante R. J., Dedeoglu A., Albers D. W., Klivenyi P., Carlson E. J., et al. (2001) Mice with a partial deficiency of manganese superoxide dismutase show increased vulnerability to the mitochondrial toxins malonate, 3-nitropropionic acid, and MPTP. Exp. Neurol. 167, 189–195.

    Article  PubMed  CAS  Google Scholar 

  • Arendt C. C. and Hochstrasser M. (1999) Eukaryotic 20S proteasome catalytic subunit propeptides prevent active site inactivation by N-terminal acetylation and promote particle assembly. EMBO J. 18, 3575–3585.

    Article  PubMed  CAS  Google Scholar 

  • Auluck P., Chan E., Trojanowski J., Lee V., and Bonini N. (2002) chaperone suppression of α-synuclein toxicity in a Drosophila model for Parkinson's disease. Science 295, 865–868.

    Article  PubMed  CAS  Google Scholar 

  • Bonifati V., Rizzu P., van Baren M. J., Schaap O., Breedveld G. J., Krieger E., et al. (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299, 256–259.

    Article  PubMed  CAS  Google Scholar 

  • Brandis K., Holmes I., and England S. (2006) α-Synuclein fission yeast model: concentration-dependent aggregation without membrane localization or toxicity. J. Mol. Neurosci., 28(6), 179–191.

    Article  PubMed  CAS  Google Scholar 

  • Burke D., Dawson D., and Stearns T. (2000) Methods in Yeast Genetics, Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  • Caughey B. and Lansbury P. T. (2003) Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci. 26, 267–298.

    Article  PubMed  CAS  Google Scholar 

  • Ciechanover A. and Brundin P. (2003) The ubiquitin-proteasome system in neurodegenerative diseases: some-times the chicken, sometimes the egg. Neuron 40, 427–446.

    Article  PubMed  CAS  Google Scholar 

  • Clayton D. and George J. (1998) The synucleins: a family of proteins involved in synaptic function, plasticity, neurodegeneration and disease. Trends Neurosci. 21, 249–254.

    Article  PubMed  CAS  Google Scholar 

  • Cole N. B., Murphy D. D., Grider T., Rueter S., Brasaemle D., and Nusbaum R. L. (2002) Lipid droplet binding and oligomerization properties of the Parkinson's disease protein α-synuclein. J. Biol. Chem. 277, 6344–6352.

    Article  PubMed  CAS  Google Scholar 

  • Conway K., Harper J., and Lansbury P. (1998) Accelerated in vitro fibril formation by a mutant α-synuclein linked to early-onset Parkinson's disease. Nat. Med. 4, 1318–1320.

    Article  PubMed  CAS  Google Scholar 

  • Conway K., Harper J., and Lansbury P. (2000) Fibrils formed in vitro from α-synuclein and two mutant forms linked to Parkinson's disease are typical amyloid. Biochemistry 39, 2552–2563.

    Article  PubMed  CAS  Google Scholar 

  • Dauer W. and Przedborski S. (2003) Parkinson's disease: mechanisms and models. Neuron 39, 889–909.

    Article  PubMed  CAS  Google Scholar 

  • Davidson W. S., Jonas A., Clayton D. F., and George J. M. (1998) Stabilization of α-synuclein secondary structure upon binding to synthetic membranes. J. Biol. Chem. 273, 9443–9449.

    Article  PubMed  CAS  Google Scholar 

  • Dawson T. M. and Dawson V. L. (2003) Molecular pathways of neurodegeneration in Parkinson's disease. Science 302, 819–822.

    Article  PubMed  CAS  Google Scholar 

  • DeMarini D. J., Papa F. R., Swaminathan S., Ursic D., Rassmussen, T. P., Culbertson M. R., and Hochstrasser M. (1995) The yeast sen3 gene encodes a regulatory subunit of the 26s proteasome complex required for ubiquitin-dependent protein degradation in vivo. Mol. Cell. Biol. 15, 6311–6321.

    PubMed  CAS  Google Scholar 

  • Dixon C., Mathias N., Zwieg R. M., Davis D. A., and Gross D. S. (2005) Alpha-Synuclein targets the plasma membrane via the secretory pathway and induces toxicity in yeast. Genetics 170, 47–59.

    Article  PubMed  CAS  Google Scholar 

  • Eliezer D., Kutluay E., Bussell R. Jr., and Browne G. (2001) Conformational properties of α-synuclein in its free and lipid-associated states. J. Mol. Biol. 307, 1061–1073.

    Article  PubMed  CAS  Google Scholar 

  • Engelender S., Kaminsky Z., Guo X., Sharp A. H., Amaravi R. K., Kleiderlein J. J., et al. (1999) Synphilin-1 associates with alpha-synuclein and promotes the formation of cytosolic inclusions. Nat. Genet. 22, 110–114.

    Article  PubMed  CAS  Google Scholar 

  • Feany M. and Bender W. (2000) A Drosophila model of Parkinson's disease. Nature 23, 294–298.

    Google Scholar 

  • Funayama M., Hasegawa K., Kowa H., Saito M., Tsuji S., and Obata F. (2002) A new locus for Parkinson's disease (PARK8) maps to chromosome 12p11.2-q13.1. Ann. Neurol. 51, 296–301.

    Article  PubMed  CAS  Google Scholar 

  • George J. M., Jin H., Woods W. S., and Clayton D. F. (1995) Characterization of a novel protein regulated during the critical period for song learning in the zebra finch. Neuron 15, 361–372.

    Article  PubMed  CAS  Google Scholar 

  • Giasson B., Duda J., Quinn S., Zhang B., Trojanowski J., and Lee V. (2002) Neuronal α-synucleinopathy with severe movement disorder in mice expressing A53T human α-synuclein. Neuron 34, 521–533.

    Article  PubMed  CAS  Google Scholar 

  • Giasson B., Uryu K., Trojanowski J., and Lee V. (1999) Mutant and wild type human α-synucleins assemble into elongated filaments with distinct morphologies in vitro. J. Biol. Chem. 274, 7619–7622.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto M., Takeda A., Hsu L. J., Takenouchi T., and Malsiah E. (1999) Role of cytrochrome c as a stimulator of α-synuclein aggregation in Lewy body disease. J. Biol. Chem. 274, 28,849–28,852.

    CAS  Google Scholar 

  • Hinerfeld D., Traini M. D., Weinberger R. P., Cochran B., Doctrow S. R., Harry J., and Melov S. (2004) Endogenous mitochondrial oxidative stress: neurodegeneration, proteomic analysis, specific respiratory chain defects, and efficacious antioxidant therapy in superoxide dismutase 2 null mice. J. Neurochem. 88, 657–667.

    Article  PubMed  CAS  Google Scholar 

  • Jenco J. M., Rawlingson A., Daniels B., and Morris A. J. (1998) Regulation of phospholipase D2: selective inhibition of mammalian phospholipase D isoenzymes by alpha- and beta-synucleins. Biochemistry 7, 4901–4909.

    Article  Google Scholar 

  • Jenner P. and Olanow C. W. (1996) Oxidative stress and the pathogenesis of Parkinson's disease. Neurology. 47, (6 Suppl. 3), S161-S170.

    PubMed  CAS  Google Scholar 

  • Jensen P. H., Nielsen M., Jakes R., Dottis C. G., and Goedert M. (1998) Binding of α-synuclein to brain vesicles is abolished by familial Parkinson's disease mutation. J. Biol. Chem. 273, 26,292–26,294.

    CAS  Google Scholar 

  • Kahle P. J., Neumann M., Ozmen L., Müller V., Jacobsen H., Schindzielorz A., et al., (2000) Subcellular localization of wild-type and Parkinson's disease-associated mutant α-synuclein in human and transgenic mouse brain. J. Neurosci. 20, 6365–6373.

    PubMed  CAS  Google Scholar 

  • Kang J. H. and Kim K. S. (2003) Enhanced oligomerization of the a-Synuclein mutant by the Cu,Zn-superoxide dismutase and hydrogen peroxide system. Mol. Cells 15, 87–93.

    PubMed  CAS  Google Scholar 

  • Kim K. S., Choi S. Y., Kwon H. Y., Won M. H., Kang T., and Kang J. H. (2002) Aggregation of a-synuclein induced by the Cu,Zn-superoxide dismutase and hydrogen peroxide system. Free Radic. Biol. Med. 32, 544–550.

    Article  PubMed  CAS  Google Scholar 

  • Kitada T., Asakawa S., Hattori N., Matsumine H., Yamamura Y., Yocochi M., et al. (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605–606.

    Article  PubMed  CAS  Google Scholar 

  • Krobitsch S. and Lindquist S. (2000) Aggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins. Proc. Natl. Acad. Sci. U. S. A. 97, 1589–1594.

    Article  PubMed  CAS  Google Scholar 

  • Kruger R., Kuhn W., Muller T., Woitalla D., Graeber M., Kosel S., et al. (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson's disease. Nat. Genet. 18, 106–108.

    Article  PubMed  CAS  Google Scholar 

  • Kunst C., Mezey E., Brownstein M., and Patterson D. (1997) Mutations in SOD1 associated with amyotrophic lateral sclerosis cause novel protein interactions. Nat. Genet. 15, 91–94.

    Article  PubMed  CAS  Google Scholar 

  • Kweon G. R., Marks J. D., Krencik R., Leung E. H., Schumacker P. T., Hyland K., and Kang U. J. (2004) Distinct mechanisms of neurodegeneration induced by chronic complex I inhibition in dopaminergic and non-dopaminergic cells. J. Biol. Chem. 279, 51,783–51,792.

    Article  CAS  Google Scholar 

  • Lasko M., Vartiainen S., Moilanen A., Sirvio J., Thomas J. H., Nass R., et al. (2003) Dopaminergic neuronal loss and motor deficits in Caenorhabditis elegans overexpressing human α-synuclein. J. Neurochem. 86, 165–172.

    Article  Google Scholar 

  • Lebovitz R. M., Zhang H., Vogel H., Cartwight J. Jr., Dionne L., Lu N., et al. (1996) Neurodegeneration, myocardial injury, and perinatal death in mitochond rial superoxide dismutase-deficient mice. Proc. Natl. Acad. Sci. U. S. A. 93, 9782–9787.

    Article  PubMed  CAS  Google Scholar 

  • Leroy E., Boyer R., Auburger G., Leube B., Ulm G., Mezzey E., et al. (1998) The ubiquitin pathway in Parkinson's disease. Nature 395, 451–452.

    Article  PubMed  CAS  Google Scholar 

  • Liang L. P. and Patel M. (2004) Mitochondrial oxidative stress and increased seizure susceptibility in Sod2 (−/+) mice. Free Radic. Biol. Med. 36, 542–554.

    Article  PubMed  CAS  Google Scholar 

  • Liu Y., Fallon L., Lashuel H. A., Liu Z., and Lansbury P. T. (2002) The UCHL-1 gene encodes two opposing enzymatic activities that affect α-synuclein degradation in Parkinson's disease susceptibility. Cell 111, 209–218.

    Article  PubMed  CAS  Google Scholar 

  • Lynn S., Huang E. J., Elchuri S., Naeemuddin M., Nishinaka Y., Yodoi J., et al. (2005) Selective neuronal vulnerability and inadequate stress response in superoxide dismutase mutant mice. Free Rad. Biol. Med. 38, 817–828.

    Article  PubMed  CAS  Google Scholar 

  • Ma J. and Lindquist S. (1999) Denovo generation of a PrPsc-like conformation in living cells. Nat. Cell Biol. 1, 358–361.

    Article  PubMed  CAS  Google Scholar 

  • Maguire-Zeiss K. A., Short D. W., and Federoff H. J. (2005) Synuclein, dopamine and oxidative stress: co-conspirators in Parkinson's disease? Mol. Brain Res. 134, 18–23.

    Article  PubMed  CAS  Google Scholar 

  • Masliah E., Rockenstein E., Veinbergs I., Mallory M., Hashimoto M., Takeda A., and Mucke L. (2000) Dopaminergic loss and inclusion body formation in α-Synuclein mice: implications for neurodegenerative disorders. Science 287, 1265–1269.

    Article  PubMed  CAS  Google Scholar 

  • McDonough V. M. and Roth T. M. (2004) Growth temperature affects accumulation of exogenous fatty acids and fatty acid composition in Schizosaccharomyces pombe. Antonie Van Leeuwenhoek 86, 349–354.

    Article  PubMed  CAS  Google Scholar 

  • McDonough and Roth (2004) not cited in text.

  • McNaught K. S. and Jenner P. (2001) Proteasomal function is impaired in substantia nigra in Parkinson's disease. Neurosci. Lett. 297, 191–194.

    Article  PubMed  CAS  Google Scholar 

  • McNaught K. S., Belizaire R., Isacson O., Jenner P., and Olanow C. W. (2003) Altered proteasomal function in sporadic Parkinson's disease. Exp. Neurol. 179, 38–46.

    Article  PubMed  CAS  Google Scholar 

  • McNaught K. S., Bjorklund L. M., Belizaire R., Isacson O., Jenner P., and Olanowski C. W. (2002a) Proteasomal inhibition causes nigral degeneration with inclusion bodies in rats. Neuroreport 13, 1437–1441.

    Article  PubMed  CAS  Google Scholar 

  • McNaught K. S., Mytilineou C., Jnobaptiste R., Yabut J., Shashidharan P., Jennert P., and Olanow C. W. (2002b) Impairment of the ubiquitin-proteasome system causes dopaminergic cell death and inclusion body formation in ventral mesencephalic cultures. J. Neurochem. 81, 301–306.

    Article  PubMed  CAS  Google Scholar 

  • Mizuno Y., Ohta S., Tanaka M., Takamiya S., Suzuki K., Sato T., et al. (1989) Deficiencies in complex I subunits of the respiratory chain in Parkinson's disease. Biochem. Biophys. Res. Commun. 163, 1450–1455.

    Article  PubMed  CAS  Google Scholar 

  • Muchowski P., Schaffar G., Sittler A., Wanker E., Hayer-Hartl M., and Hartyl F. (2000) Hsp70 and Hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils. Proc. Natl. Acad. Sci. U. S. A. 97, 7841–7846.

    Article  PubMed  CAS  Google Scholar 

  • Murphy D. D., Rueter S. M., Trojanowski J. Q., and Lee V. M. (2000) Synucleins are developmentally expressed, and α-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. J. Neurosci. 20, 3214–3220.

    PubMed  CAS  Google Scholar 

  • Narhi L., Wood S. J., Steavenson S., Jiang Y., Wu G. M., Anafi D., et al. (1999) Both familial Parkinson's disease mutations accelerate α-synuclein aggregation. J. Biol. Chem. 274, 9843–9846.

    Article  PubMed  CAS  Google Scholar 

  • Olanow C. W. and Tatton W. G. (1999) Etiology and pathogenesis of Parkinson's disease. Annu. Rev. Neurosci. 22, 123–144.

    Article  PubMed  CAS  Google Scholar 

  • Ostrerova N., Petrucellil L., Farrer M., Mehta N., Choil P., Hardy J., and Wolozin B. (1999) α-Synuclein shares physical and functional homology with 14-3-3-proteins. J. Neurosci. 19, 5782–5791.

    PubMed  CAS  Google Scholar 

  • Outeiro T. F. and Lindquist S. (2003) Yeast cells provide insight into alpha-synuclein biology and pathobiology. Science 203, 1772–1775.

    Article  Google Scholar 

  • Outeiro T. F. and Muchowski P. J. (2004) Molecular genetics approaches in yeast to study amyloid diseases. J. Mol. Neurosci. 23, 49–60.

    Article  PubMed  CAS  Google Scholar 

  • Paisan-Ruiz C., Jain S., Evans E. W., Gilks W. P., Simon J., van der Brug M., et al. (2004) Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron 44, 595–600.

    Article  PubMed  CAS  Google Scholar 

  • Perrin R. J., Woods W. S., Clayton D. F., and George J. M. (2000) Interaction of human α-synuclein and Parkinson's disease variants with phospholipids. J. Biol. Chem. 275, 34,393–34,398.

    Article  CAS  Google Scholar 

  • Pias E. K., Ekshyyan O. Y., Rhoads C. A., Fuseler J., Harrison L., and Aw T. Y. (2003) Differential effects of superoxide dismutase isoform expression on hydroperoxide-induced apoptosis in PC-12 cells. J. Biol. Chem. 278, 13,294–13,301.

    Article  CAS  Google Scholar 

  • Petrucelli L., O'Farell C., Lockhart P. J., Baptisa M., Kehoe K., Vink L., et al. (2002) Parkin protects against the toxicity associated with mutant α-synuclein: proteasome dysfunction selectively affects catecholaminergic neurons. Neuron 36, 1007–1019.

    Article  PubMed  CAS  Google Scholar 

  • Polymeropoulos M. H., Lavedan C., Leroy E., Ide S. E., Dehejia A., Dutra A., et al. (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science 276, 2045–2047.

    Article  PubMed  CAS  Google Scholar 

  • Poon H. F., Frasier M., Shreve N., Calabrese V., Wolozin B., and Butterfield D. (2005) Mitochondrial associated metabolic proteins are selectively oxidized in A30P alpha-synuclein transgenic mice—a model of familial Parkinson's disease. Neurobiol. Dis. 18, 492–498.

    Article  PubMed  CAS  Google Scholar 

  • Rochet J. C., Outeiro T. F., Conway K. A., Ding T. T., Volles M. J., Lashuel H. A., et al. (2004) Interactions among alpha-synuclein, dopamine, and biomembranes: some clues for understanding neurodegeneration in Parkinson's disease. J. Mol. Neurosci. 23, 23–34.

    Article  PubMed  CAS  Google Scholar 

  • Sharon R., Goldberg M., Bar I., Betensky R., Shen J., and Selkoe D. (2001) α-Synuclein occurs in lipid-rich high molecular weight complexes, binds fatty acids, and shows homology to the fatty-acid binding proteins. Proc. Natl. Acad. Sci. U. S. A. 98, 9110–9115.

    Article  PubMed  CAS  Google Scholar 

  • Shendelman S., Jonason A., Martinat C., Leete T., and Abeliovich A. (2004) DJ-1 is a redox-dependent molecular chaperone that inhibits alpha-synuclein aggregate formation. PLoS Biol. 2, e362.

    Article  PubMed  Google Scholar 

  • Sherer T. B., Betarbet R., Stout A. K., Lund S., Baptista M., Panov A. V., et al. (2002) An in vitro model of Parkinson's disease: linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage. J. Neurosci. 22, 7006–7015.

    PubMed  CAS  Google Scholar 

  • Shimura H., Schlossmacher M., Hattori N., Frosch M., Trockenbacher A., Schneider R., et al. (2001) Ubiquitination of a new form of α-synuclein by parkin from human brain: implications for Parkinson's disease. Science 293, 263–269.

    Article  PubMed  CAS  Google Scholar 

  • Sisodia S. S. (1998) Nuclear inclusions in glutamine repeat disorders: are they pernicious, coincidental, or beneficial? Cell 95, 1–4.

    Article  PubMed  CAS  Google Scholar 

  • Snyder H., Mensh K., Theisler C., Lee J. L., Matouschek A., and Wolozin B. (2003) Aggregated and monomeric forms of α-synuclein bind to the S6′ proteasomal protein and inhibit proteasomal function. J. Biol. Chem. 278, 11,753–11,759.

    CAS  Google Scholar 

  • Song D. D., Shults C. W., Sisk A., Rockenstein E., and Masliah E. (2004) Enhanced substantia nigra mitochondrial pathology in human alpha-synuclein transgenic mice after treatment with MPTP. Exp. Neurol. 186, 158–172.

    Article  PubMed  CAS  Google Scholar 

  • Spillantini M., Schmidt M., Lee V., Trojanowski J., Lakes R., and Goedert M. (1998) α-Synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease. Proc. Natl. Acad. Sci. U. S. A. 95, 6469–6473.

    Article  PubMed  CAS  Google Scholar 

  • Taylor J. P., Hardy J., and Fishbeck K. H. (2002) Toxic proteins in neurodegenerative disease. Science 296, 1991–1995.

    Article  PubMed  CAS  Google Scholar 

  • Testa C. M., Sherer T. B., and Greenamyre J. T. (2005) Rotenone induces oxidative stress and dopaminergic neuron damage in organotypic substantia nigra cultures. Mol. Brain Res. 134, 109–118.

    Article  PubMed  CAS  Google Scholar 

  • Thiruchelvam M., Prokopenk O., Cory-Slechta D. A., Richfield E. K., Buckley B., and Mirochnitchenko O. (2005) Overexpression of superoxide dismutase or glutathione peroxidase protects against the paraquat+ maneb-induced Parkinson's disease phenotype. J. Biol. Chem. 280, 22,530–22,539.

    Article  CAS  Google Scholar 

  • Valente E. M., Abou-Sleiman P. M., Caputo V., Muqit M. M., Harvey K., Gispert S., et al. (2004) Hereditary earlyonset Parkinson's disease caused by mutations in PINK1. Science 304, 1158–1160.

    Article  PubMed  CAS  Google Scholar 

  • Wersinger C., Prou D., Vernier P., Niznik H. B., and Sidhu A. (2003) Mutations in the lipid-binding domain of alpha-synuclein confer overlapping yet distinct, functional properties in the regulation of dopamine transporter activity. Mol. Cell. Neurosci. 24, 91–105.

    Article  PubMed  CAS  Google Scholar 

  • Willingham S., Outeiro T. F., DeVit M. J., Lindquist S., and Muchowski P. J. (2003) Yeast genes that enhance the toxicity of a mutant huntingtin or α-synuclein. Science 302, 1769–1772.

    Article  PubMed  CAS  Google Scholar 

  • Zabrocki P., Pellens K., Vanhelmont T., Vandebroek T., Griffioen G., Wera S., et al. (2005) Characterization of α-synuclein aggregation and synergistic toxicity of protein tau in yeast. FEBS J. 272, 1386–1400.

    Article  PubMed  CAS  Google Scholar 

  • Zarranz J. J., Alegre J., Gomez-Esteban J. C., Lezcano E., Ros R., Ampuero I. et al. (2004) The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann. Neurol. 55, 164–173.

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y., Gu G., Goodlett D. R., Zhang T., Pan C., Montine T. J., e al. (2004) Analysis of alpha-synuclein-associated proteins by quantitative proteomics. J. Biol. Chem. 279, 39,155–39,164.

    CAS  Google Scholar 

  • Zimprich A., Biskup S., Leitner P., Lichtner P., Farrer M., Lincoln S., et al. (2004) Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44, 601–607.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shubhik K. DebBurman.

Additional information

Author to whom all correspondence and requests should be addressed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, N., Brandis, K.A., Herrera, S.K. et al. α-synuclein budding yeast model. J Mol Neurosci 28, 161–178 (2006). https://doi.org/10.1385/JMN:28:2:161

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:28:2:161

Index Entries

Navigation