Skip to main content
Log in

Fatty acid transport

The diffusion mechanism in model and biological membranes

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The transport of fatty acids (FA) across membranes can be described by three fundamental steps: adsorption, transmembrane movement, and desorption. In model membranes, these steps are all rapid and spontaneous for most fatty acids, suggesting that FA can enter cells by free diffusion rather than by protein-mediated mechanisms. Here we present new fluorescence approaches that measure adsorption and transmembrane movement of FA independently. We show that FA adsorb to the plasma membrane of adipocytes and diffuse through the membrane by the flip-flop mechanism within the time resolution of our measurements (∼5 s). Thus we show that passive diffusion is a viable mechanism, although we did not evaluate its exclusivity. Important implications of the diffusion mechanism for neural cells are that all types of FA could be available and that selectivity is controlled by metabolism. Studies of FA uptake into brain endothelial cells and other brain cell types need to be performed to determine mechanisms of uptake, and metabolism of FA must be separated in order to understand the role of membrane transport in the overall up take process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abumrad N., Harmon C., and Ibrahimi A. (1998) Membrane transport of long-chain fatty acids: evidence for a facilitated process. J. Lipid Res. 39(12), 2309–2318.

    PubMed  CAS  Google Scholar 

  • Cabral D. J., Small D. M., Lilly H. S., and Hamilton J. A. (1987) Transbilayer movement of bile acids in model membranes. Biochemistry 26(7), 1801–1804.

    Article  PubMed  CAS  Google Scholar 

  • Civelek V. N., Hamilton J. A., Tornheim K., Kelly K. L., and Corkey B. E. (1996) Intracellular pH in adipocytes: effects of free fatty acid diffusion across the plasma membrane, lipolytic agonists, and insulin. Proc. Natl. Acad. Sci. USA 93(19), 10,139–10,144.

    Article  CAS  Google Scholar 

  • Daniels C., Noy N., and Zakim, D. (1985) Rates of hydration of fatty acids bound to unilamellar vesicles of phosphatidylcholine or to albumin. Biochemistry 24(13), 3286–3292.

    Article  PubMed  CAS  Google Scholar 

  • Darnell J., Lodish H., and Baltimore D. (1990) Molecular Cell Biology. Scientific American Books, Inc., New York.

    Google Scholar 

  • Dietschy J. M. (1978) General principles governing movement of lipids across biological membranes, in Disturbances in Lipid and Lipoprotein Metabolism (Dietschy J. M., Gotto J., Ontko A. M., and Ontko J. A., eds.), American Physiological Society, Bethesda, MD, pp. 1–29.

    Google Scholar 

  • Fischer H., Gottschilch R., and Seelig A. (1998) Blood-brain barrier permeation: Molecular parameters governing passive diffusion. J. Membrane Biol. 165, 201–211.

    Article  CAS  Google Scholar 

  • Hamilton J. A., Civelek V. N., Kamp F., Tornheim K., and Corkey B. E. (1994) Changes in internal pH caused by movement of fatty acids into and out of clonal pancreatic beta-cells (HIT). J. Biol. Chem. 269(33), 20,852–20,856.

    CAS  Google Scholar 

  • Hamilton J. A. (1995) 13-C NMR studies of the interactions of fatty acids with phospholipid bilayers, plasma lipoprotein, and proteins, in Carbon-13 NMR Spectroscopy. (Beckman N., ed.), Academic Press, USA, pp. 117–157.

    Google Scholar 

  • Hamilton J. A. (1998) Fatty acid transport: difficult or easy? J. Lipid. Res. 39(3), 467–481.

    PubMed  CAS  Google Scholar 

  • Hamilton J. A. (1999) Transport of fatty acids across membranes by the diffusion mechanism. Prostaglandins Leukot. Essent. Fatty Acids 60(5–6), 291–297.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton J. A. and Kamp, F. (1999) How are free fatty acids transported in membranes? Is it by proteins or by free diffusion through the lipids? Diabetes 48(12), 2255–2269.

    Article  PubMed  CAS  Google Scholar 

  • Herman R., Leaf A., and Schwartz W. (1964) Diffusion of weak acids across the toad bladder. J. Gen. Physiol. 48, 379–389.

    Article  Google Scholar 

  • Ho J. K., Moser H., Kishimoto Y., and Hamilton J. A. (1995) Interactions of a very long chain fatty acid with model membranes and serum albumin. Implications for the pathogenesis of adrenoleukodystrophy. J. Clin. Invest. 96(3), 1455–1463.

    Article  PubMed  CAS  Google Scholar 

  • Kamp F. and Hamilton J. A. (1992) pH gradients across phospholipid membranes caused by fast flip-flop of un-ionized fatty acids. Proc. Natl. Acad. Sci. USA 89(23), 11,367–11,370.

    Article  CAS  Google Scholar 

  • Kamp F., Zakim D., Zhang F., Noy N., and Hamilton J. A. (1995) Fatty acid flip-flop in phospholipid bilayers is extremely fast. Biochemistry 34(37), 11,928–11,937.

    Article  CAS  Google Scholar 

  • Kantor H. L. and Prestegard J. H. (1978) Fusion of phosphatidylcholine bilayer vesicles: role of free fatty acid. Biochemistry 17(17), 3592–3597.

    Article  PubMed  CAS  Google Scholar 

  • Marbois B. N., Ajie H. O., Korsak R. A., Sensharma D. K., and Edmond J. (1992) The origin of palmitic acid in brain of the developing rat. Lipids 27(8), 587–592.

    Article  PubMed  CAS  Google Scholar 

  • Mastrangelo A. M., Jeitner, T. M. and Eaton J. W. (1998) Oleic acid increases cell surface expression and activity of CD11b on human neutrophils. J. Immunol. 161(8), 4268–4275.

    PubMed  CAS  Google Scholar 

  • Moser H. W. and Moser A. B. (1989) X-linked adrenoleukodystrophy, in The Metabolic Basis of Inherited Disease. (Scriver C. R., Beaudet A. L., and Sly W. S., eds.), McGraw Hill, New York, pp. 1511–1532.

    Google Scholar 

  • Moser H. W. (1997) Adrenoleukodystrophy: phenotype, genetics, pathogenesis and therapy. Brain 120(Pt 8), 1485–1508.

    Article  PubMed  Google Scholar 

  • Paulussen R. J. A. and Veerkamp J. H. (1990) Intracellular fatty acid binding proteins: characteristics and function, in Subcellular Biochemistry, vol. 16 (Hilderson H. J., ed.), Plenum Press, New York, pp. 175–226.

    Google Scholar 

  • Richieri G. V., Ogata R. T., and Kleinfeld A. M. (1992) A fluorescently labeled intestinal fatty acid binding protein. Interactions with fatty acids and its use in monitoring free fatty acids. J. Biol. Chem. 267(33), 23,495–23,501.

    CAS  Google Scholar 

  • Robinson P. J., Noronha J., DeGeorge J. J., Freed L. M., Nariai T., and Rapoport S. I. (1992) A quantitative method for measuring regional in vivo fatty-acid incorporation into and turnover within brain phospholipids: review and critical analysis. Brain Res. Brain Res. Rev. 17(3), 187–214.

    Article  PubMed  CAS  Google Scholar 

  • Spector A. A. (1975) Fatty acid binding to plasma albumin. J. Lipid Res. 16(3), 165–179.

    PubMed  CAS  Google Scholar 

  • Spector A. A. (1986) Plasma albumin as a lipoprotein, in Biochemistry and Biology of Plasma Lipoptotein. (Scanu, A. M. and Spector, A. A., eds.), Marcel Dekker, Inc., New York, pp. 247–279.

    Google Scholar 

  • Stremmel W., Strohmeyer G., and Berk P. D. (1986) Hepatocellular uptake of oleate is energy dependent, sodium linked, and inhibited by an antibody to a hepatocyte plasma membrane fatty acid binding protein. Proc. Natl. Acad. Sci. USA 83(11), 3584–3588.

    Article  PubMed  CAS  Google Scholar 

  • Trigatti B. L. and Gerber G. E. (1996) The effect of intracellular pH on long-chain fatty acid uptake in 3T3-L1 adipocytes: evidence that uptake involves the passive diffusion of protonated long-chain fatty acids across the plasma membrane. Biochem. J. 313(Pt 2), 487–494.

    PubMed  CAS  Google Scholar 

  • van der Vusse G. J., van Bilsen M., and Glatz J. F. C. (2000) Cardiac fatty acid uptake and transport in health and disease. Cardiovasc. Res. (45), 279–293.

    Article  PubMed  Google Scholar 

  • Van Nieuwenhoven F. A., Verstijnen C. P., Van Eys G. J., Van Breda E., De Jong Y. F., Van der Vusse G. J., and Glatz J. F. (1994) Fatty acid transfer across the myocardial capillary wall: no evidence of a substantial role for cytoplasmic fatty acid-binding protein. J. Mol. Cell. Cardiol. 26(12), 1635–1647.

    Article  PubMed  Google Scholar 

  • Xu H. E., Lambert M. H., Montana V. G., Parks D. J., Blanchard S. G., Brown P. J., et al. (1999) Molecular recognition of fatty acids by peroxisome proliferator-activated receptors. Mol. Cell 3(3), 397–403.

    Article  PubMed  CAS  Google Scholar 

  • Zhang F., Kamp F., and Hamilton J. A. (1996) Dissociation of long and very long chain fatty acids from phospholipid bilayers. Biochemistry 35(50), 16,055–16,060.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Hamilton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamilton, J.A., Johnson, R.A., Corkey, B. et al. Fatty acid transport. J Mol Neurosci 16, 99–108 (2001). https://doi.org/10.1385/JMN:16:2-3:99

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:16:2-3:99

Index Entries

Navigation