Skip to main content
Log in

A survival guide to early T cell development

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

The survival of immature T cell precursors is dependent on both thymus-derived extrinsic signals and self-autonomous pre-TCR-mediated signals. While the role of cytokines and the pre-TCR in promoting thymocyte survival has been well established, the relationship between pro- and anti-apoptotic signaling cascades remains poorly defined. Recent studies have established a link between cell survival and growth factor-mediated maintenance of cellular metabolism. In this regard, the Notch signaling pathway has emerged as more than an inducer of T lineage commitment and differentiation, but also as a potent trophic factor, promoting the survival and metabolic state of pre-T cells. In this review, we describe current concepts of the intracellular signaling pathways downstream of cell intrinsic and extrinsic factors that dictate survival versus death outcomes during early T cell development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Raff MC: Social controls on cell survival and cell death. Nature 1992;356:397–400.

    PubMed  CAS  Google Scholar 

  2. Schmitt TM, Zúñiga-Pflücker JC: Thymus-derived signals regulate early T-cell development. Crit Rev Immunol 2005;25:141–159.

    PubMed  CAS  Google Scholar 

  3. Dudley EC, Petrie HT, Shah LM, Owen MJ, Hayday AC: T cell receptor beta chain gene rearrangement and selection during thymocyte development in adult mice. Immunity 1994;1:83–93.

    PubMed  CAS  Google Scholar 

  4. von Boehmer H, Aifantis I, Feinberg J, et al: Pleiotropic changes controlled by the pre-T-cell receptor. Curr Opin Immunol 1999;11:135–142.

    Google Scholar 

  5. Starr TK, Jameson SC, Hogquist KA: Positive and negative selection of T cells. Annu Rev Immunol 2003;21:139–176.

    PubMed  CAS  Google Scholar 

  6. Godfrey DI, Kennedy J, Suda T, Zlotnik A: A developmental pathway involving four phenotypically and functionally distinct subsets of CD3-CD4-CD8-triplenegative adult mouse thymocytes defined by CD44 and CD25 expression. J Immunol 1993;150:4244–4252.

    PubMed  CAS  Google Scholar 

  7. Capone M, Hockett RD, Jr, Zlotnik A: Kinetics of T cell receptor beta, gamma, and delta rearrangements during, adult thymic development: T cell receptor rearrangements are present in CD44(+)CD25(+) Pro-T thymocytes. Proc Natl Acad Sci USA 1998;95: 12522–12527.

    PubMed  CAS  Google Scholar 

  8. Godfrey DI, Kennedy J, Mombaerts P, Tonegawa S, Zlotnik A: Onset of TCR-beta gene rearrangement and role of TCR-beta expression during CD3-CD4-CD8-thymocyte differentiation. J Immunol 1994;152:4783–4792.

    PubMed  CAS  Google Scholar 

  9. Livak F, Tourigny M, Schatz DG, Petrie HT: Characterization of TCR gene rearrangements during adult murine T cell development. J Immunol 1999;162:2575–2580

    PubMed  CAS  Google Scholar 

  10. Kang J, Coles M, Cado D, Raulet DH: The developmental fate of T cells is critically influenced by TCRgammadelta expression. Immunity 1998;8:427–438.

    PubMed  CAS  Google Scholar 

  11. Passoni L, Hoffman ES, Kim S, et al: Intrathymic delta selection events in gammadelta cell development. Immunity 1997;7:83–95.

    PubMed  CAS  Google Scholar 

  12. Michie AM, Zúñiga-Pflücker JC: Regulation of thymocyte differentiation: pre-TCR signals and beta-selection. Semin Immunol 2002;14:311–323.

    PubMed  CAS  Google Scholar 

  13. Pinkoski MJ, Green DR: Apoptosis in the regulation of immune responses. J Rheumatol Suppl 2005;74:19–25.

    PubMed  CAS  Google Scholar 

  14. Mak TW, Yeh WC: Signaling for survival and apoptosis in the immune system. Arthritis Res 2002;4 Suppl 3:S243-S252.

    PubMed  Google Scholar 

  15. Zou H, Henzel WJ, Liu X, Lutschg A, Wang X: Apaf-1, a human protein homologous to C, elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 1997;90:405–413.

    PubMed  CAS  Google Scholar 

  16. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 1997;91:479–489.

    PubMed  CAS  Google Scholar 

  17. Chipuk JE, Green DR: Do inducers of apoptosis trigger caspase-independent cell death? Nat Rev Mol Cell Biol 2005;6:268–275.

    PubMed  CAS  Google Scholar 

  18. Marsden VS, Strasser A: Control of apoptosis in the immune system: Bc1-2, BH3-only proteins and more, Annu Rev Immunol 2003;21:71–105.

    PubMed  CAS  Google Scholar 

  19. Green DR, Kroemer G: The pathophysiology of mitochondrial cell death. Science 2004;305:626–629.

    PubMed  CAS  Google Scholar 

  20. Chen L, Willis SN, Wei A, et al: Differential targeting of prosurvival Bc1-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell 2005;17:393–403.

    PubMed  CAS  Google Scholar 

  21. Strasser A: The role of BH3-only proteins in the immune system. Nat Rev Immunol 2005;5:189–200.

    PubMed  CAS  Google Scholar 

  22. Kuwana T, Rouchier-Hayes L, Chipuk JE, et al: BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol Cell 2005;17:525–535.

    PubMed  CAS  Google Scholar 

  23. Nicholson KM, Anderson NG: The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal 2002;14:381–395.

    PubMed  CAS  Google Scholar 

  24. del Peso L, Gonzalez-Garcia M, Page C, Herrera R, Nunez G: Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 1997;278:687–689.

    PubMed  Google Scholar 

  25. Arden KC, Biggs WH, 3rd: Regulation of the FoxO family of transcription factors by phosphatidylinositol-3 kinase-activated signaling. Arch Biochem Biophys 2002;403:292–298.

    PubMed  CAS  Google Scholar 

  26. Pekarsky Y, Hallas C, Palamarchuk A, et al: Akt phosphorylates and regulates the orphan nuclear receptor Nur77. Proc Natl Acad Sci USA 2001;98:3690–3694.

    PubMed  CAS  Google Scholar 

  27. Kandel ES, Hay N: The regulation and activities of the multifunctional serine/threonine kinase Akt/PKB. Exp Cell Res 1999;253:210–229

    PubMed  CAS  Google Scholar 

  28. Vander Heiden MG, Plas DR, Rathmell JC, Fox CJ, Harris MH, Thompson CB: Growth factors can influence cell growth and survival through effects on glucose metabolism. Mol Cell Biol 2001;21:5899–5912.

    Google Scholar 

  29. Rathmell JC, Fox CJ, Plas DR, Hammerman PS, Cinalli RM, Thompson CB: Akt-directed glucose metabolism can prevent Bax conformation change and promote growth factor-independent survival. Mol Cell Biol 2003;23:7315–7328.

    PubMed  CAS  Google Scholar 

  30. Whetton AD, Bazill GW, Dexter TM: Haemopoietic cell growth factor mediates cell survival via its action on glucose transport. EMBO J 1984;3:409–413.

    PubMed  CAS  Google Scholar 

  31. Rathmell JC, Vander Heiden MG, Harris MH, Frauwirth KA, Thompson CB: In the absence of extrinsic signals, nutrient utilization by lymphocytes is insufficient to maintain either cell size or viability. Mol Cell 2000;6:683–692.

    PubMed  CAS  Google Scholar 

  32. Edinger AL, Thompson CB: Akt maintains cell size and survival by increasing, mTOR-dependent nutrient uptake. Mol Biol Cell 2002;13:2276–2288.

    PubMed  CAS  Google Scholar 

  33. Plas DR, Thompson CB: Cell metabolism in the regulation of programmed cell death. Trends Endocrinol Metab 2002;13:75–78.

    PubMed  Google Scholar 

  34. Fox CJ, Hammerman PS, Thompson CB: Fuel feeds function: energy metabolism and the T-cell response. Nat Rev Immunol 2005;5:844–852.

    PubMed  CAS  Google Scholar 

  35. Khaled AR, Durum SK: Death and Baxes: mechanisms of lymphotrophic cytokines. Immunol Rev 2003;193:48–57.

    PubMed  CAS  Google Scholar 

  36. Ogawa M, Matsuzaki Y, Nishikawa, S, et al: Expression and function of c-kit in hemopoietic progenitor cells. J Exp Med 1991;174:63–71

    PubMed  CAS  Google Scholar 

  37. Rodewald HR, Kretzschmar K, Swat W, Takeda S: Intrathymically expressed c-kit ligand (stem cell factor) is a major jactor driving expansion of very immature thymocytes in vivo. Immunity 1995;3:313–319

    PubMed  CAS  Google Scholar 

  38. Di Santo JP, Rodewald HR: In vivo roles of receptor tyrosine kinases and cytokine receptors in early thymocyte development. Curr Opin Immunol 1998;10:196–207.

    PubMed  Google Scholar 

  39. Sudo T, Nishikawa S, Ohno N, et al: Expression and function of the interleukin 7 receptor in murine lymphocytes. Proc Natl Acad Sci USA 1993;90:9125–9129.

    PubMed  CAS  Google Scholar 

  40. Van De Wiele CJ, Marino JH, Murray BW, Vo SS, Whetsell ME, Teague TK. Thymocytes between the beta-selection and positive selection checkpoints are nonresponsive to IL-7 as assessed by STAT-5 phosphorylation. J Immunol 2004;172:4235–4244

    Google Scholar 

  41. Yu Q, Park JH, Doan LL, Erman B, Feigenbaum L, Singer A: Cytokine signal transduction is suppressed in preselection double-positive thymocytes and restored by positive selection. J Exp Med 2006;203:165–175

    PubMed  CAS  Google Scholar 

  42. von Freeden-Jeffry U, Vieira P, Lucian LA, McNeil T, Burdach SE, Murray R: Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J Exp Med 1995;181:1519–1526.

    Google Scholar 

  43. Peschon JJ, Morrissey PJ, Grabstein KH, et al: Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J Exp Med 1994; 180:1955–1960.

    PubMed  CAS  Google Scholar 

  44. Cao X, Shores EW, Hu-Li J, et al: Defective lymphoid development in mice lacking expression of the common cytokine receptor gamma chain. Immunity 1995; 2:223–238.

    PubMed  CAS  Google Scholar 

  45. Moore TA, von Freeden-Jeffry U Murray R, Zlotnik A: Inhibition of gamma delta T cell development and early thymocyte maturation in IL-7-/-mice. J Immunol 1996;157:2366–2373.

    PubMed  CAS  Google Scholar 

  46. Maki K, Sunaga S, Komagata Y, et al: Interleukin 7 receptor-deficient mice lack gammadelta T cells. Proc Natl Acad Sci USA 1996;93:7172–7177.

    PubMed  CAS  Google Scholar 

  47. Malissen M, Pereira P, Gerber DJ, Malissen B, DiSanto JP: The common cytokine receptor gamma chain controls survival of gamma/delta T cells. J Exp Med 1997;186:1277–1285.

    PubMed  CAS  Google Scholar 

  48. Rodewald HR, Ogawa M, Haller C, Waskow C, DiSanto JP: Pro-thymocyte expansion by c-kit and the common cytokine receptor gamma chain is essential for repertoire formation. Immunity 1997;6:265–272.

    PubMed  CAS  Google Scholar 

  49. Akashi K, Kondo M, von Freeden-Jeffry U, Murray R, Weissman IL. Bc1-2 rescues T lymphopoiesis in interleukin-7 receptor-deficient mice. Cell 1997;89: 1033–1041.

    PubMed  CAS  Google Scholar 

  50. von Freeden-Jeffry U, Solvason N, Howard M, Murray R: The earliest T lineage-committed cells depend on IL-7 for Bc1-2 expression and normal cell cycle progression. Immunity 1997;7:147–154.

    Google Scholar 

  51. Kim K, Lee CK, Sayers TJ, Muegge K, Durum SK: The trophic action of IL-7 on pro-T cells: inhibition of apoptosis of pro-T1,-T2, and-T3 cells correlates with Bc1-2 and Bax levels and is independent of Fas and p53 pathways. J Immunol 1998;160:5735–5741.

    PubMed  CAS  Google Scholar 

  52. Maraskovsky E, O'Reilly LA, Teepe M, Corcoran LM, Peschon JJ, Strasser A: Bcl-2 can rescue T lymphocyte development in interleukin-7 receptor-deficient mice but not in mutant, rag-1-/- mice. Cell 1997;89: 1011–1019.

    PubMed  CAS  Google Scholar 

  53. Kondo M, Akashi K, Domen J, Sugamura K, Weissman IL: Bc1-2 rescues T lymphopoiesis, but not B or NK cell development, in common gamma chain-deficient mice. Immunity 1997;7:155–162.

    PubMed  CAS  Google Scholar 

  54. Rodewald HR, Waskow C, Haller C: Essential requirement for c-kit and common gamma chain in thymocyte development cannot be overruled by enforced expression of Bc1-2. J Exp Med 2001;193:1431–1437.

    PubMed  CAS  Google Scholar 

  55. Nakajima H, Leonard WJ: Role of Bc1-2 in alpha beta T cell development in mice deficient in the common cytokine receptor gamma-chain: the requirement for Bc1-2 differs depending on the TCR/MHC affinity. J Immunol 1999;162:782–790.

    PubMed  CAS  Google Scholar 

  56. Maki K, Sunaga S, Ikuta K: The V-J recombination of T cell receptor-gamma genes is blocked in interleukin-7 receptor-deficient mice. J Exp Med 1996;184: 2423–2427.

    PubMed  CAS  Google Scholar 

  57. Durum SK, Candeias S, Nakajima H, et al: Interleukin 7 receptor control of T cell receptor gamma gene rearrangement: role of receptor-associated chains and locus accessibility. J Exp Med 1998;188:2233–2241.

    PubMed  CAS  Google Scholar 

  58. Veis DJ, Sorenson CM, Shutter JR, Korsmeyer SJ: Bc1-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 1993;75:229–240.

    PubMed  CAS  Google Scholar 

  59. Matsuzaki Y, Nakayama K, Nakayama K, et al: Role of bc1-2 in the development of lymphoid cells from the hematopoietic stem cell. Blood 1997;89:853–862.

    PubMed  CAS  Google Scholar 

  60. Nakayama K, Nakayama K, Negishi I, Kuida K, Sawa H, Loh DY: Targeted disruption of Bc1-2 alpha beta in mice: occurrence of gray hair, polycystic kidney disease, and lymphocytopena. Proc Natl Acad Sci USA 1994;91:3700–3704.

    PubMed  CAS  Google Scholar 

  61. Yang T, Buchan HL, Townsend KJ, Craig RW: MCL-1, a member of the BLC-2 family, is induced rapidly in response to signals for cell differentiation or death, but not to signals for cell proliferation. J Cell Physiol 1996;166:523–536.

    PubMed  CAS  Google Scholar 

  62. Opferman JT, Letai A, Beard C, Sorcinelli MD, Ong CC, Korsmeyer SJ: Development and maintenance of B and T lymphocytes requires antiapoptotic MCL-1. Nature 2003;426:671–676.

    PubMed  CAS  Google Scholar 

  63. Opferman JT, Iwasaki H, Ong CC, et al: Obligate role of anti-apoptotic MCL-1 in the survival of hematopoietic stem cells. Science 2005;307:1101–1104.

    PubMed  CAS  Google Scholar 

  64. Khaled AR, Li WQ, Huang J, et al: Bax deficiency partially corrects interleukin-7 receptor alpha deficiency. Immunity 2002;17:561–573.

    PubMed  CAS  Google Scholar 

  65. Li WQ, Jiang Q, Khaled AR, Keller JR, Durum SK: Interleukin-7 inactivates the pro-apoptotic protein Bad promoting T cell survival. J Biol Chem 2004;279: 29160–29166.

    PubMed  CAS  Google Scholar 

  66. Khaled AR, Kim K, Hofmeister R, Muegge K, Durum SK: Withdrawal of IL-7 induces Bax translocation from cytosol to mitochondria through a rise in intracellular pH. Proc Natl Acad Sci USA 1999;96:14476–14481.

    PubMed  CAS  Google Scholar 

  67. Wen R, Wang D, McKay C, et al: Jak3 selectively regulates Bax and Bc1-2 expression to promote T-cell development. Mol Cell Biol 2001;21:678–689.

    PubMed  CAS  Google Scholar 

  68. Pellegrini M, Bouillet P, Robati M, Belz GT, Davey GM, Strasser A: Loss of Bim increases T cell production and function in interleukin 7 receptor-deficient mice. J Exp Med 2004;200:1189–1195.

    PubMed  CAS  Google Scholar 

  69. Pallard C, Stegmann AP, van Kleffens T, Smart F, Venkitaraman A, Spits H: Distinct roles of the phosphatidylinositol 3-kinase and STAT5 pathways in IL-7-mediated development of human thymocyte precursors. Immunity 1999;10:525–535.

    PubMed  CAS  Google Scholar 

  70. Barata JT, Silva A, Brandao JG, Nadler LM, Cardoso AA, Boussiotis VA: Activation of PI3K is indispensable for interleukin 7-mediated viability, proliferation, glucose use, and growth of T cell acute lymphoblastic leukemia cells. J Exp Med 2004;200:659–669.

    PubMed  CAS  Google Scholar 

  71. Sade H, Sarin A: IL-7 inhibits dexamethasone-induced apoptosis via Akt/PKB in mature, peripheral T cells. Eur J Immunol 2003;33:913–919.

    PubMed  CAS  Google Scholar 

  72. Hagenbeek TJ, Naspetti M, Malergue F, et al: The loss of PTEN allows TCR alphabeta lineage thymocytes to bypass IL-7 and Pre-TCR-mediated signaling. J Exp Med 2004;200:883–894.

    PubMed  CAS  Google Scholar 

  73. Rathmell JC, Farkash EA, Gao W, Thompson CB: IL-7 enhances the survival and maintains the size of naive T cells. J Immunol 2001;167:6869–6876.

    PubMed  CAS  Google Scholar 

  74. Yu Q, Erman B, Bhandoola A, Sharrow SO, Singer A: In vitro evidence that cytokine receptor signals are required for differentiation of double positive thymocytes into functionally mature CD8+T cells. J Exp Med 2003;197:475–487.

    PubMed  CAS  Google Scholar 

  75. Cho H, Mu J, Kim JK, et al: Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science 2001;292: 1728–1731.

    PubMed  CAS  Google Scholar 

  76. Cho H, Thorvaldsen JL, Chu Q, Feng F, Birnbaum MJ: Akt1/PKBalpha is required for normal growth but dispensable for maintenance of glucose homeostasis in mice. J Biol Chem 2001;276:38349–38352.

    PubMed  CAS  Google Scholar 

  77. Swat W, Montgrain V, Doggett TA, et al: The essential role of PI3K{delta} and PI3K{gamma} in thymocyte survival. Blood 2006;107:2415–2422.

    PubMed  CAS  Google Scholar 

  78. Webb LM, Vigorito E, Wymann MP, Hirsch E, Turner M: Cutting edge: T cell development requires the combined activities of the p110gamma and p110delta catalytic isoforms of phosphatidylinositol 3-kinase. J Immunol 2005;175:2783–2787.

    PubMed  CAS  Google Scholar 

  79. Fox CJ, Hammerman PS, Thompson CB: The Pim kinases control rapamycin-resistant T cell survival and activation. J Exp Med 2005;201:259–266.

    PubMed  CAS  Google Scholar 

  80. Calo V, Migliavacca M, Bazan V, et al: STAT proteins: from normal control of cellular events to tumorigenesis. J Cell Physiol 2003;197:157–168.

    PubMed  CAS  Google Scholar 

  81. Fox CJ, Hammerman, PS, Cinalli RM, Master SR, Chodosh LA, Thompson CB: The serine/threonine kinase Pim-2 is a transcriptionally regulated apoptotic inhibitor. Genes Dev 2003;17:1841–1854.

    PubMed  CAS  Google Scholar 

  82. Yan B, Zemskova M, Holder S, et al: The PIM-2 kinase phosphorylates BAD on serine 112 and reverses BAD-induced cell death. J Biol Chem 2003;278:45358–45367.

    PubMed  CAS  Google Scholar 

  83. Mikkers H, Nawijn M, Allen J, et al: Mice deficient for all PIM kinases display reduced body size and impaired responses to hematopoietic growth factors. Mol Cell Biol 2004;24:6104–6115.

    PubMed  CAS  Google Scholar 

  84. Jacobs H, Krimpenfort P, Haks M, et al: PIM1 reconstitutes thymus cellularity in interleukin 7- and common gamma chain-mutant mice and permits thymocyte maturation in Rag- but not CD3gamma-deficient mice. J Exp Med 1999;190:1059–1068.

    PubMed  CAS  Google Scholar 

  85. Haks MC, Krimpenfort P, van den Brakel JH, Kruisbeek AM, Pre-TCR signaling and inactivation of p53 induces crucial cell survival pathways in pre-T cells. Immunity 1999;11:91–101.

    PubMed  CAS  Google Scholar 

  86. Falk I, Nerz G, Haidl I, Krotkova A, Eichmann K: Immature thymocytes that fail to express TCRbeta and/or TCRgamma delta proteins die by apoptotic cell death in the CD44(−)CD25(−) (DN4) subset. Eur J Immunol 2001;31:3308–3317.

    PubMed  CAS  Google Scholar 

  87. Mandal M, Borowski C, Palomero T, et al: The BCL2A1 gene as a pre-T cell receptor-induced regulator of thymocyte survival. J Exp Med 2005;201:603–614.

    PubMed  CAS  Google Scholar 

  88. Jiang D, Lenardo MJ, Zúñiga-Pflücker JC: p53 prevents maturation to the CD4+CD8+stage of thymocyte differentiation in the absence of T cell receptor rearrangement. J Exp Med 1996;183:1923–1928.

    PubMed  CAS  Google Scholar 

  89. Guidos CJ, Williams CJ, Grandal I, Knowles G, Huang MT, Danska JS: V(D)J recombination activates a p53-dependent DNA damage checkpoint in scid lymphocyte precursors. Genes Dev 1996;10:2038–2054.

    PubMed  CAS  Google Scholar 

  90. Schuler M, Green DR: Transcription, apoptosis and p53: catch-22. Trends Genet 2005;21:182–187.

    PubMed  CAS  Google Scholar 

  91. Villunger A, Michalak EM, Coultas L, et al: p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science 2003;302: 1036–1038.

    PubMed  CAS  Google Scholar 

  92. Chipuk JE, Bouchier-Hayes L, Kuwana T, Newmeyer DD, Green DR: PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science 2005;309:1732–1735.

    PubMed  CAS  Google Scholar 

  93. Newton K, Harris AW, Strasser A: FADD/MORT1 regulates the pre-TCR checkpoint and can function as a tumour suppressor. EMBO J 2000;19:931–941.

    PubMed  CAS  Google Scholar 

  94. Wang EC, Thern A, Denzel A, Kitson J, Farrow SN, Owen MJ: DR3 regulates negative selection during thymocyte development. Mol Cell Biol 2001;21:3451–3461.

    PubMed  CAS  Google Scholar 

  95. Zhang N, He YW: An essential role for c-FLIP in the efficient development of mature T lymphocytes. J Exp Med 2005;202:395–404.

    PubMed  CAS  Google Scholar 

  96. Chau H, Wong V, Chen NJ, et al: Cellular FLICE-inhibitory protein is required for T cell survival and cycling. J Exp Med 2005;202:405–413.

    PubMed  CAS  Google Scholar 

  97. Zhang J, Cado D, Chen A, Kabra NH, Winoto A: Fas-mediated apoptosis and activation-induced T-cell proliferation are defective in mice lacking FADD/Mort 1. Nature 1998;392:296–300.

    PubMed  CAS  Google Scholar 

  98. Salmena L, Lemmers B, Hakem A, et al: Essential role for caspase 8 in T-cell homeostasis and T-cell-mediated immunity. Genes Dev 2003;17:883–895.

    PubMed  CAS  Google Scholar 

  99. Kabra NH, Kang C, Hsing LC, Zhang J, Winoto A: T cell-specific FADD-deficient mice: FADD is required for early T cell development. Proc Natl Acad Sci USA 2001;98:6307–6312.

    PubMed  CAS  Google Scholar 

  100. Voll RE, Jimi E, Phillips RJ, et al: NF-kappa B activation by the pre-T cell receptor serves as a selective survival signal in T lymphocyte development. Immunity 2000;13:677–689.

    PubMed  CAS  Google Scholar 

  101. Aifantis I, Gounari F, Scorrano L, Borowski C, von Boehmer H: Constitutive pre-TCR signaling promotes differentiation through Ca2+ mobilization and activation of NF-kappaB and NFAT. Nat Immunol 2001;2:403–409.

    PubMed  CAS  Google Scholar 

  102. Lucas PC, McAllister-Lucas LM, Nunez G: NF-kappaB signaling in lymphocytes: a new cast of characters. J Cell Sci 2004;117:31–39.

    PubMed  CAS  Google Scholar 

  103. Michie AM, Soh JW, Hawley RG, Weinstein IB, Zúñiga-Pflücker JC: Allelic exclusion and differentiation by protein kinase C-mediated signals in immature thymocytes. Proc Natl Acad Sci USA 2001;98:609–614.

    PubMed  CAS  Google Scholar 

  104. Ciofani M, Schmitt TM, Ciofani A, et al: Obligatory role for cooperative signaling by pre-TCR and Notch during thymocyte differentiation. J Immunol 2004;172:5230–5239.

    PubMed  CAS  Google Scholar 

  105. Sun Z, Arendt CW, Ellmeier W, et al: PKC-theta is required for TCR-induced NF-kappaB activation in mature but not immature T lymphocytes. Nature 2000;404:402–407.

    PubMed  CAS  Google Scholar 

  106. Motoyama N, Wang F, Roth KA, et al: Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science 1995;267:1506–1510.

    PubMed  CAS  Google Scholar 

  107. Strasser A, Harris AW, Corcoran LM, Cory S: Bcl-2 expression promotes B- but not T-lymphoid development in scid mice. Nature 1994;368:457–460.

    PubMed  CAS  Google Scholar 

  108. Chao DT, Korsmeyer SJ: BCL-XL-regulated apoptosis in T cell development. Int Immunol 1997;9:1375–1384.

    PubMed  CAS  Google Scholar 

  109. Gonzalez J, Orlofsky A, Prystowsky, MB: A1 is a growth-permissive antiapoptotic factor mediating postactivation survival in T cells. Blood 2003;101:2679–2685.

    PubMed  CAS  Google Scholar 

  110. Schmitt TM, Ciofani M, Petrie HT, Zúñiga-Pflücker JC: Maintenance of T cell specification and differentiation requires recurrent notch receptor-ligand interactions. J Exp Med 2004;200:469–479.

    PubMed  CAS  Google Scholar 

  111. Radtke F, Wilson A, Mancini SJ, MacDonald HR: Notch regulation of lymphocyte development and function. Nat Immunol 2004;5:247–253.

    PubMed  CAS  Google Scholar 

  112. Maillard I, Fang T, Pear WS: Regulation of lymphoid development, differentiation, and function by the Notch pathway. Annu Rev Immunol 2005;23:945–974.

    PubMed  CAS  Google Scholar 

  113. Wolfer A, Wilson A, Nemir M, MacDonald HR, Radtke F: Inactivation of Notch1 impairs VDJbeta rearrangement and allows pre-TCR-independent survival of early alpha beta Lineage Thymocytes. Immunity 2002;16:869–879.

    PubMed  CAS  Google Scholar 

  114. Tanigaki K, Tsuji M, Yamamoto N, et al: Regulation of alphabeta/gammadelta T cell lineage commitment and peripheral T cell responses by Notch/RBP-J signaling. Immunity 2004;20:611–622.

    PubMed  CAS  Google Scholar 

  115. Schmitt TM, Zúñiga-Pflücker JC: Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro. Immunity 2002;17:749–756.

    PubMed  CAS  Google Scholar 

  116. Zúñiga-Pflücker JC: T-cell development made simple. Nat Rev Immunol 2004;4:67–72.

    PubMed  Google Scholar 

  117. Ciofani M, Zúñiga-Pflücker JC: Notch promotes survival of pre-T cells at the beta-selection checkpoint by regulating cellular metabolism. Nat Immunol 2005; 6:881–888.

    PubMed  CAS  Google Scholar 

  118. Deftos ML, He YW, Ojala EW, Bevan MJ: Correlating notch signaling with thymocyte maturation. Immunity 1998;9:777–786.

    PubMed  CAS  Google Scholar 

  119. Jehn BM, Bielke W, Pear WS, Osborne BA: Cutting edge: protective effects of notch-1 on TCR-induced apoptosis. J Immunol 1999;162:635–638.

    PubMed  CAS  Google Scholar 

  120. Sade H, Krishna S, Sarin A: The anti-apoptotic effect of Notch-1 requires p56lck-dependent, Akt/PKB-mediated signaling in T cells. J Biol Chem 2004;279:2937–2944.

    PubMed  CAS  Google Scholar 

  121. Bellavia D, Campese AF, Alesse E, et al: Constitutive activation of NF-kappaB and T-cell leukemia/lymphoma in Notch3 transgenic mice. EMBO J 2000;19:3337–3348.

    PubMed  CAS  Google Scholar 

  122. Talora C, Campese AF, Bellavia D, et al: Pre-TCR-triggered ERK signalling-dependent downregulation of E2A activity in Notch3-induced T-cell lymphoma. EMBO Rep 2003;4:1067–1072.

    PubMed  CAS  Google Scholar 

  123. Huang EY, Gallegos AM, Richards SM, Lehar SM, Bevan MJ: Surface expression of Notch1 on thymocytes: correlation with the double-negative to double-positive transition. J Immunol 2003;171:2296–2304.

    PubMed  CAS  Google Scholar 

  124. Allman D, Sambandam A, Kim S, et al: Thymopoiesis independent of common lymphoid progenitors. Nat Immunol 2003;4:168–174.

    PubMed  CAS  Google Scholar 

  125. Porritt HE, Rumfelt LL, Tabrizifard S, Schmitt TM, Zúñiga-Pflücker JC, Petrie HT: Heterogeneity among DN1 prothymocytes reveals multiple progenitors with different capacities to generate T cell and non-T cell lineages. Immunity 2004;20:735–745.

    PubMed  CAS  Google Scholar 

  126. Lind EF, Prockop SE, Porritt HE, Petrie HT: Mapping precursor movement through the postnatal thymus reveals specific microenvironments supporting defined stages of early lymphoid development. J Exp Med 2001;194:127–134.

    PubMed  CAS  Google Scholar 

  127. Porritt HE, Gordon K, Petrie HT: Kinetics of steadystate differentiation and mapping of intrathymic-signaling environments by stem cell transplantation in nonirradiated mice. J Exp Med 2003;198:957–962.

    PubMed  CAS  Google Scholar 

  128. Petrie HT: Cell migration and the control of post-natal T-cell lymphopoiesis in the thymus. Nat Rev Immunol 2003;3:859–866.

    PubMed  CAS  Google Scholar 

  129. Prockop SE, Palencia S, Ryan CM, Gordon K, Gray D, Petrie HT: Stromal cells provide the matrix for migration of early lymphoid progenitors through the thymic cortex. J Immunol 2002;169:4354–4361.

    PubMed  CAS  Google Scholar 

  130. Ara T, Itoi M, Kawabata K, et al: A role of CXC chemokine ligand 12/stromal cell-derived factor-1/pre-B cell growth stimulating factor and its receptor CXCR4 in fetal and adult T cell development in vivo. J Immunol 2003;170:4649–4655.

    PubMed  CAS  Google Scholar 

  131. Plotkin J, Prockop SE, Lepique A, Petrie HT: Critical role for CXCR4 signaling in progenitor localization and T cell differentiation in the postnatal thymus. J Immunol 2003;171:4521–4527.

    PubMed  CAS  Google Scholar 

  132. Misslitz A, Pabst O, Hintzen G, et al: Thymic T cell development and progenitor localization depend on CCR7. J Exp Med 2004;200:481–491.

    PubMed  CAS  Google Scholar 

  133. Vielkind S, Gallagher-Gambarelli M, Gomez M, Hinton HJ, Cantrell DA: Integrin regulation by RhoA in thymocytes. J Immunol 2005;175:350–357.

    PubMed  CAS  Google Scholar 

  134. Galandrini R, Henning SW, Cantrell DA: Different functions of the GTPase Rho in prothymocytes and late pre-T cells. Immunity 1997;7:163–174.

    PubMed  CAS  Google Scholar 

  135. Henning SW, Galandrini R, Hall A, Cantrell DA: The GTPase Rho has a critical regulatory role in thymus development. EMBO J 1997;16:2397–2407.

    PubMed  CAS  Google Scholar 

  136. Stupack DG, Cheresh DA: Get a ligand, get a life: integrins, signaling and cell survival. J Cell Sci 2002; 115:3729–3738.

    PubMed  CAS  Google Scholar 

  137. Youn BS, Yu KY, Oh J, Lee J, Lee TH, Broxmeyer HE: Role of the CC chemokine receptor 9/TECK interaction in apoptosis. Apoptosis 2002;7:271–276.

    PubMed  CAS  Google Scholar 

  138. Prockop SE, Petrie HT: Regulation of thymus size by competition for stromal niches among early T cell progenitors. J Immunol 2004;173:1604–1611.

    PubMed  CAS  Google Scholar 

  139. Zamisch M, Moore-Scott B, Su DM, Lucas PJ, Manley N, Richie ER: Ontogeny and regulation of IL-7-expressing thymic epithelial cells. J Immunol 2005; 174:60–67.

    PubMed  CAS  Google Scholar 

  140. Petrie HT, Tourigny M, Burtrum DB, Livak F: Precursor thymocyte proliferation and differentiation are controlled by signals unrelated to the pre-TCR. J Immunol 2000;165:3094–3098.

    PubMed  CAS  Google Scholar 

  141. Yamasaki S, Ishikawa E, Sakuma M, et al: Mechanistic basis of pre-T cell receptor-mediated autonomous signaling critical for thymocyte development. Nat Immunol 2006;7:67–75.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Carlos Zúñiga-Pflücker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciofani, M., Zúñiga-Pflücker, J.C. A survival guide to early T cell development. Immunol Res 34, 117–132 (2006). https://doi.org/10.1385/IR:34:2:117

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IR:34:2:117

Key Words

Navigation