Skip to main content
Log in

Regulation of epithelial cell growth by ZBP-89

Potential relevance in pancreatic cancer

  • Review Article
  • Published:
International Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Abstract

ZBP-89 (ZNF148) is a Zinc finger Binding Protein of 89 kDa that binds GC-rich DNA elements. Originally, it was expression cloned using a DNA element mediating EGF regulation of the gastrin promoter. ZBP-89 functions as both a transcriptional activator and repressor. A variety of extracellular regulators including TGFβ, retinoic acid and butyrate stimulate ZBP-89 gene expression. Butyrate activation of p21WAF1 is potentiated by ZBP-89 gene expression correlating with cell differentiation. ZBP-89 stimulates growth arrest and apoptosis through its ability to bind the p21WAF1 promoter or its ability to form protein-protein interactions with p53. ZBP-89 protein is elevated in a variety of gastrointestinal cancers as well as the pancreas. In particular, ZBP-89 is normally expressed in pancreatic islets and ducts and in about 30% of pancreatic adenocarcinomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sakorafas GH, Tsiotou AG, Tsiotos GG. Molecular biology of pancreatic cancer; oncogenes, tumour suppressor genes, growth factors, and their receptors from a clinical perspective. Cancer Treat Rev 2000;26:29–52.

    Article  PubMed  CAS  Google Scholar 

  2. Bai L, Merchant JL. ZBP-89 Promotes Growth Arrest through Stabilization of p53. Mol Cell Biol 2001;21:4670–4683.

    Article  PubMed  CAS  Google Scholar 

  3. Merchant JL, Iyer GR, Taylor BR, et al. ZBP-89, a Kruppel-type zinc finger protein, inhibits EGF induction of the gastrin promoter. Mol Cell Biol 1996;16:6644–6653.

    PubMed  CAS  Google Scholar 

  4. Hasegawa T, Takeuchi A, Miyaishi O, Isobe K-I, Crombrugghe BD. Cloning and characterization of a transcription factor that binds to the proximal promoters of the two mouse type I collagen genes. J Biol Chem 1997;272:4915–4923.

    Article  PubMed  CAS  Google Scholar 

  5. Passantino R, Antona V, Barbieri G et al. Negative regulation of β enolase gene transcription in embryonic muscle is dependent upon a zinc finger factor that binds to the G-rich box within the muscle-specific enhancer. J Biol Chem 1998;273:484–494.

    Article  PubMed  CAS  Google Scholar 

  6. Wang Y, Kobori TA, Hood L. The htβ gene encodes a novel CACCC boxbinding protein that regulates T-cell receptor gene expression. Mol Cell Biol 1993;13:5691–5701.

    PubMed  CAS  Google Scholar 

  7. Law GL, Itoh H, Law DJ, Mize GJ, Merchant JL, Morris DR. Transcription factor ZBP-89 regulates the activity of the ornithine decarboxylase promoter. J Biol Chem 1998;273:19,955–19,964.

    Article  CAS  Google Scholar 

  8. Reizis B, Leder P. Expression of the mouse pre-TCR alpha gene is controlled by an upstream region containing a transcriptional enhancer. J Exp Med 1999;189:1669–1678.

    Article  PubMed  CAS  Google Scholar 

  9. Yamada A, Takaki S, Hayashi F, Georgopoulos K, Perlmutter RM, Takatsu K. Identification and characterization of a transcriptional regulator for the lck proximal promoter. J Biol Chem 2001;276:18,082–18,089.

    CAS  Google Scholar 

  10. Law DJ, Tarle SA, Merchant JL. The human ZBP-89 homolog, located at chromosome 3q21, represses gastrin gene expression. Mamm Genome 1998;9:165–167.

    Article  PubMed  CAS  Google Scholar 

  11. Bellefroid EJ, Lecocq PJ, Benhida A, Poncelet DA, Belayew A, Martial JA. The human genome contains hundreds of genes coding for finger proteins of the Kruppel type. DNA 1989;8:377–387.

    PubMed  CAS  Google Scholar 

  12. Schamhorst V, van der Eb AJ, Jochemsen AG. WT1 proteins: functions in growth and differentiation. Gene 2001;273:141–161.

    Article  Google Scholar 

  13. Black AR, Black JD, Azizkhan-Clifford J. Spl and kruppellike factor family of transcription factors in cell growth regulation and cancer. J Cell Physiol 2001;188:143–160.

    Article  PubMed  CAS  Google Scholar 

  14. Ye S, Whatling C, Watkins H, Henney A. Human stromelysin gene promoter activity is modulated by transcription factor ZBP-89. FEBS Lett 1999;450:268–272.

    Article  PubMed  CAS  Google Scholar 

  15. Remington MC, Tarle SA, Simon B, Merchant JL. ZBP-89, a Kruppel-type zinc finger protein, inhibits cell proliferation. Biochem Biophys Res Commun 1997;237:230–234.

    Article  PubMed  CAS  Google Scholar 

  16. Dawson MI, Park JH, Chen G et al. Retinoic acid (RA) receptor transcriptional activation correlates with inhibition of 12-O-tetradecanoylphorbol-13-acetate-induced ornithine decarboxylase (ODC) activity by retinoids: a potential role for trans-RA-induced ZBP-89 in ODC inhibition. Int J Cancer 2000;91:8–21.

    Article  Google Scholar 

  17. Merchant JL, Bai L, Law D. Zinc finger factor ZBP-89 is regulated by TGF beta and during gastric transformation. Cancer Detect Prevent 1998;22:S109.

    Google Scholar 

  18. Hahn SA, Schutte M, Hoque AT et al. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 1996;271:350–353.

    Article  PubMed  CAS  Google Scholar 

  19. Scaglia L, Smith FE, Bonner-Weir S. Apoptosis contributes to the involution of beta cell mass in the post partum rat pancreas. Endocrinology 1995;136:5461–5468.

    Article  PubMed  CAS  Google Scholar 

  20. Miralles F, Battelino T, Czemichow P, Scharfmann R. TGF-beta plays a key role in morphogenesis of the pancreatic islets of Langerhans by controlling the activity of the matrix metalloproteinase MMP-2. J Cell Biol 1998;143:827–836.

    Article  PubMed  CAS  Google Scholar 

  21. Muller-Pillasch F, Gress TM, Yamaguchi H, Geng M, Adler G, Menke A. The influence of transforming growth factor beta 1 on the expression of genes coding for matrix metalloproteinases and tissue inhibitors of metalloproteinases during regeneration from cerulein-induced pancreatitis. Pancreas 1997;15:168–175.

    Article  PubMed  CAS  Google Scholar 

  22. Kerr LD, Miller DB, Matrisian LM. TGF-beta 1 inhibition of transin/stromelysin gene expression is mediated through a Fos binding sequence. Cell 1990;61:267–278.

    Article  PubMed  CAS  Google Scholar 

  23. Bai L, Merchant JL. Transcription factor ZBP-89 cooperates with histone acetyltransferase p300 during butyrate activation of p21 waf1 transcription in human cells. J Biol Chem 2000;275:30,725–30,733.

    CAS  Google Scholar 

  24. Bamard JA, Warwick G. Butyrate rapidly induces growth inhibition and differentiation in HT-29 cells. Cell Gorwth Differ 1993;4:495–501.

    Google Scholar 

  25. Mandal M, Kumar R. Bcl-2 expression regulates sodium butyrate-induced apoptosis in human MCF-7 breast cancer cells. Cell Growth Differ 1996;7:311–318.

    PubMed  CAS  Google Scholar 

  26. Bernhard D, Ausserlechner MJ, Tonko M, et al. Apoptosis induced by the histone deacetylase inhibitor sodium butyrate in human leukemic lymphoblasts. FASEB J 1999;13:1991–2001.

    PubMed  CAS  Google Scholar 

  27. Giuliano M, Lauricella M, Calvaruso G, et al. The apoptotic effects and synergistic interaction of sodium butyrate and MG132 in human retinoblastoma Y79 cells. Cancer Res 1999;29:5586–5595.

    Google Scholar 

  28. Archer SY, Meng S, Shei A, Hodin RA. p21 (WAF1) is required for butyrate-mediated growth inhibition of human colon cancer cells. Proc Natl Acad Sci USA 1998;95:6791–6796.

    Article  PubMed  CAS  Google Scholar 

  29. Gartel AL, Tyner AL. Transcriptional regulation of the p21 (WAF1/CIP1) gene. Exp Cell Res (1999);246:280–289.

    Article  PubMed  CAS  Google Scholar 

  30. Hasegawa T, Xiao H, Isobe K-i. Cloning of a GADD34-like gene that interacts with the zinc-finger transcription factor which binds to the p21 WAF promoter. Biochem Biophys Res Commun 1999;256:249–254.

    Article  PubMed  CAS  Google Scholar 

  31. Prives C, Hall PA. The p53 pathway. J Pathol 1999;187:112–126.

    Article  PubMed  CAS  Google Scholar 

  32. Gorunova L, Hoglund M, Andren-Sandberg A, et al. Cytogenetic analysis of pancreatic carcinomas: intratumor heterogeneity and nonrandom pattern of chromosome aberrations. Genes Chromosomes Cancer 1998;23:81–99.

    Article  PubMed  CAS  Google Scholar 

  33. Taniuchi T, Mortensen ER, Ferguson A, Greenson J, Merchant JL. Overexpression of ZBP-89, a zinc finger DNA binding protein, in gastric cancer. Biochem Biophys Res Commun 1997;233:154–160.

    Article  PubMed  CAS  Google Scholar 

  34. Traber PG, Silberg DG. Intestine-specific gene transcription. Annu Rev Physiol 1996;58:275–297.

    Article  PubMed  CAS  Google Scholar 

  35. Antona V, Cammarata G, De Gregorio L, Dragani TA, Giallongo A, Feo S. The gene encoding the transcriptional repressor BERF-1 maps to a region of conserved synteny on mouse chromosome 16 and human chromosome 3 and a related pseudogene maps to mouse chromosome 8. Cytogenet Cell Genet 1998;83:90–92.

    Article  PubMed  CAS  Google Scholar 

  36. Feo S, Antona V, Cammarata G et al. Conserved Structure and Promoter Sequence Similarity in the Mouse and Human Genes Encoding the Zinc Finger Factor BERF-1/BFCOL1/ZBP-89. Biochem Biophys Res Commun 2001;283:209–218.

    Article  PubMed  CAS  Google Scholar 

  37. Law DJ, Du M, Law GL, Merchant JL. ZBP-99 defines a conserved family of transcription factors and regulates ornithine decarboxylase gene expression. Biochem Biophys Res Commun 1999;262:113–120.

    Article  PubMed  CAS  Google Scholar 

  38. Lisowsky T, Polosa PL, Sagliano A, Roberti M, Gadaleta MN, Cantatore P. Identification of human GC-box-binding zinc finger protein, a new Kruppel-like zinc finger protein, by the yeast one-hybrid screening with a GC-rich target sequence. FEBS Lett 1999;453:369–374.

    Article  PubMed  CAS  Google Scholar 

  39. Cordon-Cardo C, Latres E, Drobnjak M, et al. Molecular abnormalities of mdm2 and p53 genes in adult soft tissue sarcomas. Cancer Res 1994;54:794–799.

    PubMed  CAS  Google Scholar 

  40. Moll UM, LaQuaglia M, Benard J, Riou G. Wild-type p53 protein undergoes cytoplasmic sequestration in undifferentiated neuroblastomas but not in differentiated tumors. Proc Natl Acad Sci USA 1995;92:4407–4411.

    Article  PubMed  CAS  Google Scholar 

  41. Larsson LI, Rehfeld JF, Sundler F, Hakanson R. Pancreatic gastrin in foetal and neonatal rats. Nature 1976;262:609–610.

    Article  PubMed  CAS  Google Scholar 

  42. Brand SJ, Fuller PJ. Differential gastrin gene expression in rat gastrointestinal tract and pancreas during neonatal development. J Biol Chem 1988;263:5341–5347.

    PubMed  CAS  Google Scholar 

  43. Wang TC, Bonner-Weir S, Oates PS, et al. Pancreatic gastrin stimulates islet differentiation of transforming growth factor alpha-induced ductular precursor cells. J Clin Invest 1993;92:1349–1356.

    Article  PubMed  CAS  Google Scholar 

  44. Caplin M, Savage K, Khan K, et al. Expression and processing of gastrin in pancreatic adenocarcinoma. Br J Surg 2000;87:1035–1040.

    Article  PubMed  CAS  Google Scholar 

  45. Smith JP, Fantaskey AP, Liu G, Zagon IS. Indentification of gastrin as a growth peptide in human pancreatic cancer. Am J Physiol 1995;268:R135-R141.

    PubMed  CAS  Google Scholar 

  46. Roebuck BD, Baumgartner KJ, Longnecker DS. Growth of pancreatic foci and development of pancreatic cancer with a single dose of azaserine in the rat. Carcinogenesis 1987;8:1831–1835.

    Article  PubMed  CAS  Google Scholar 

  47. Smith JP, Shih A, Wu Y, McLaughlin PJ, Zagon IS. Gastrin regulates growth of human pancreatic cancer in a tonic and autocrine fashion. Am J Physiol 1996;270:R1078-R1084.

    PubMed  CAS  Google Scholar 

  48. Brett B, Savage K, Michaeli D, Grimes S, Dhillon AP, Pounder RE. The effect of antibodies raised against gastroimmune on the proliferation of human pancreatic carcinoma cell lines. Gut 1999;44:A48.

    Google Scholar 

  49. Hasegawa T, Takeuchi A, Miyaishi O, Xiao H, Mao J, Isobe K. PTRF (polymerase I and transcript-release factor) is tissue-specific and interacts with the BFCOL1 (binding factor of a type-I collagen promoter) zinc-finger transcription factor which binds to the two mouse type-I collagen gene promoters. Biochem J 2000;347:55–59.

    Article  PubMed  CAS  Google Scholar 

  50. Cheng PY, Kagawa N, Takahashi Y, Waterman MR. Three Zinc Finger Nuclear Proteins, Spl, Sp3, and aZBP-89 Homologue, Bind to the Cyclic Adenosine Monophosphate-Responsive Sequence of the Bovine Adrenodoxin Gene and Regulate Transcription. Biochemistry 2000;39:4347–4357.

    Article  PubMed  CAS  Google Scholar 

  51. Keates AC, Keates S, Kwon JH, et al. ZBP-89, Spl, and nuclear factor-kappa B regulate epithelial neutrophilactivating peptide-78 gene expression in Caco-2 human colonic epithelial cells. J Biol Chem 2001;276:43,713–43,722.

    Article  CAS  Google Scholar 

  52. Baumann M., Feederle R, Kremmer E, Hammerschmidt W. Cellular transcription factors recruit viral replication proteins to activate the Epstein-Barr virus origin of lytic DNA replication, oriLyt. EMBO J 1999;18(12):6095–6105.

    Article  PubMed  CAS  Google Scholar 

  53. Wieczorek E, Lin Z, Perkins EB, Law DJ, Merchant JL, Zehner ZE. The zinc finger repressor, ZBP-89, binds to the silencer element of the human vimentin gene and complexes with the transcriptional activator, Sp1. J Biol Chem 2000;275(17):12879–12888.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juanita L. Merchant MD, Ph.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, L., Logsdon, C. & Merchant, J.L. Regulation of epithelial cell growth by ZBP-89. Int J Gastrointest Canc 31, 79–88 (2002). https://doi.org/10.1385/IJGC:31:1-3:79

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IJGC:31:1-3:79

Key Words

Navigation