Skip to main content
Log in

Ontogeny and autoregulation of androgen receptor mRNA expression in the nervous system

  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Androgens and the androgen receptor (AR) both play critical roles for the development of the male phenotype. To investigate the roles of androgens in the developing nervous system, we examined the AR messenger RNA distribution by in situ hybridization. Our results indicate that AR transcripts were detectable in male mouse embryos at embryonic day 11 (E11). Intensive AR labeling appears in the neuroepithelium of brain vesicles and spinal cord, as well as in the reproductive organs. During E15–E16, new and strong AR labeling appeared in the cortex of cerebrum and hippocampus. Specific AR signals were also present in the brain areas known for hormonal control of copulatory behavior and mediating sensory processing. Interestingly, many ganglia were found to express AR mRNA at E15–E16. These novel AR-expressing sites include the dorsal root, sympathetic, and celiac ganglia, as well as the opthalmic nerve of trigeminal ganglion. Sex dimorphism of AR expression in brain was also observed during E15–E16. Postnatally, brain and spinal cord can respond to circulating androgen levels by modifying their AR gene expression, but the ganglia cannot. Together, these data suggest androgens may have a great influence on the development and maintenance of the nervous system through the AR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chang, C., Kokontis, J., and Liao, S. (1988). Science 240, 324–326.

    Article  PubMed  CAS  Google Scholar 

  2. Nebert, D. W. (1987). Annu. Rev. Biochem. 56, 945–993.

    Article  PubMed  CAS  Google Scholar 

  3. Kelly, D. D. (1991). In: Principles of Neural Science. Kandel, E. R., Schwartz, J. H., and Jessell, T. M. (eds.). Elsevier, Amsterdam, pp. 959–973.

    Google Scholar 

  4. MacLusky, N. J. and Naftolin, F. (1981). Science 211, 1294–1303.

    Article  PubMed  CAS  Google Scholar 

  5. Simerly, R. B., Chang, C., Muramatsu, M., and Swanson, L. W. (1990). J. Comp. Neurol. 294, 76–95.

    Article  PubMed  CAS  Google Scholar 

  6. Shughrue, P. J. and Dorsa, D. M. (1994). Endocrinology 134, 1321–1328.

    Article  PubMed  CAS  Google Scholar 

  7. Krey, L. C., MacLusky, N. J., Davis, P. G., Lieberburg, D. I., and Roy, E. J. (1982). Endocrinology 110, 2159–2167.

    PubMed  CAS  Google Scholar 

  8. Gladue, B. A. and Clemens, L. G. (1978). Endocrinology 103, 1702–1709.

    PubMed  CAS  Google Scholar 

  9. Roselli, C. A., Handa, R. J., and Resko, J. A. (1989). Neuroendocrinology 49, 449–453.

    PubMed  CAS  Google Scholar 

  10. Kerr, J. E., Allore, R. J., Beck, S. G., and Handa, R. J. (1995). Endocrinology 136, 3213–3221.

    Article  PubMed  CAS  Google Scholar 

  11. Hart, B. L. (1979). Physiol. Behav. 23, 107–109.

    Article  PubMed  CAS  Google Scholar 

  12. Roof, R. L. and Havens, M. D. (1992). Brain Res. 572, 310–331.

    Article  PubMed  CAS  Google Scholar 

  13. Yu, W.-H. and Srinivasan, R. (1981). Exp. Neurol. 71, 431–435.

    Article  PubMed  CAS  Google Scholar 

  14. Gorski, R. A. (1979) In Ontogeny of Receptors and Reproductive Hormone Action. Hamilton, T. H., Sadler, W. A., and Clark, J. H. (eds.). Raven, New York, pp. 371–402.

    Google Scholar 

  15. Swerdloff, R. S., Wang, C., Hines, M., and Gorski, R. (1992). Psychoneuroendocrinology 17, 375–383.

    Article  PubMed  CAS  Google Scholar 

  16. Swanson, L. W. and Simmons, D. M. (1989). J. Comp. Neurol. 285, 413–435.

    Article  PubMed  CAS  Google Scholar 

  17. Wasner, G., Hennermann, I., and Kratochwil, K. (1983). Endocrinology 113, 1771–1780.

    PubMed  CAS  Google Scholar 

  18. Takeda, H. and Chang, C. (1991). J. Endocrinol. 129, 83–89.

    PubMed  CAS  Google Scholar 

  19. Cooke, P. S., Young, P., and Cunha, G. R. (1991). Endocrinology 128, 2867–2873.

    PubMed  CAS  Google Scholar 

  20. Vito, C. C. and Fox, T. O. (1982). Brain Res. Dev. Brain Res. 2, 97–110.

    Article  Google Scholar 

  21. Cain, M. P., Kramer, S. A., Tindall, D. J., and Husmann, D. A. (1994). J. Urol. 152, 766–769.

    PubMed  CAS  Google Scholar 

  22. Woods, J. E., Blandin, C. M., and Thommes, R. C. (1994). Growth Dev. Aging 58, 21–31.

    PubMed  CAS  Google Scholar 

  23. Lauber, M. E. and Lichtensteiger, W. (1996). Endocrinology 137, 2718–2730.

    Article  PubMed  CAS  Google Scholar 

  24. Celotti, F., Melcangi, R. C., Negri-Cesi, P., Ballabio, M., and Martini, L. (1987). J. Steroid Biochem. 26, 125–129.

    Article  PubMed  CAS  Google Scholar 

  25. Lauber, M. E. and Lichtensteiger, W. (1994). Endocrinology 135, 1661–1668.

    Article  PubMed  CAS  Google Scholar 

  26. DonCarlos, L. L., Monroy, E., and Morrell, J. I. (1991). J. Comp. Neurol. 305, 591–612.

    Article  PubMed  CAS  Google Scholar 

  27. van Eekelen, J. A., Bohn, M. C., and de Kloet, E. R. (1991). Brain Res. Dev. Brain Res. 61, 33–43.

    Article  PubMed  Google Scholar 

  28. van Eekelen, J. A., Jiang, W., de Kloet, E. R., and Bohn, M. C. (1988). J. Neurosci. Res. Comm. 21, 88–94.

    Article  Google Scholar 

  29. Roselli, C. E. (1991). Endocrinology 128, 1310–1316.

    Article  PubMed  CAS  Google Scholar 

  30. Prins, G. S. and Woodham, C. (1995). Biol. Reprod. 53, 609–619.

    Article  PubMed  CAS  Google Scholar 

  31. Blok, L. J., Bartlett, J. M., Bolt-De Vries, J., Themmen, A. P., Brinkmann, A. O., Weinbauer, G. F., et al. (1992). Int. J. Androl. 15, 182–198.

    Article  PubMed  CAS  Google Scholar 

  32. Burgess, L. H. and Handa, R. J. (1993). Brain Res. Mol. Brain Res. 19, 31–38.

    Article  PubMed  CAS  Google Scholar 

  33. Quarmby, V. E., Yarbrough, W. G., Lubahn, D. B., French, F. S., and Wilson, E. M. (1990). Mol. Endocrinol. 4, 22–28.

    Article  PubMed  CAS  Google Scholar 

  34. Brooks, B. P. and Fischbeck, K. H. (1995). Trends. Neurosci. 18, 459–461.

    Article  PubMed  CAS  Google Scholar 

  35. Handa, R. J., Reid, D. L., and Resko, J. A. (1986). Biol. Reprod. 34, 293–303.

    Article  PubMed  CAS  Google Scholar 

  36. Kunieda, T., Xian, M., Kobayashi, E., Imamichi, T., Moriwaki, K., and Toyoda, Y. (1992). Biol. Reprod. 46, 692–697.

    Article  PubMed  CAS  Google Scholar 

  37. Young, W.-J., Smith, S. M., and Chang, C. (1997). J. Biol. Chem. 272, 3109–3116.

    Article  PubMed  CAS  Google Scholar 

  38. Young, W.-J., Roecker, E. B., Weindruch, R., and Chang, C. (1994). Endocrine J. 2, 321–329.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chawnshang Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Young, WJ., Chang, C. Ontogeny and autoregulation of androgen receptor mRNA expression in the nervous system. Endocr 9, 79–88 (1998). https://doi.org/10.1385/ENDO:9:1:79

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ENDO:9:1:79

Key Words

Navigation