Skip to main content
Log in

Theoretical description of the ion transport across nanopores with titratable fixed charges

Analogies between ion channels and synthetic pores

  • Review
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Recently developed nanometer-sized synthetic pores display several properties so far believed to be distinctive features of a large variety of biological wide ion channels. Thus conductance in the pS-nS range, pH-dependent ion selectivity, fluctuations of current between open and closed states, flux inhibition caused by protons or divalent cations, current rectification, and the ability to perform selective macromolecule sizing and counting are found in synthetic and biological channels alike. Despite other differences such as pore size and geometry, the similarities open a new field for exploring specific technological applications via the chemical modification of synthetic pores with biological molecules. This article reviews some of the basis concepts and theories relevant to ion transport in nanopores with titratable charges stressing the analogies between synthetic pores and biological ion channels. The ultimate goal is to show that continuum theories may account for the essential features of these systems. A simple electrodiffusion model and its comparison with experimental results are chosen as a case study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hille, B. (2001) Ionic Channels of Excitable Membranes, 3rd ed. Sinauer, Sunderland, MA.

    Google Scholar 

  2. Neher, E., and Sackmann, B. (1976) Single-channel currents recorded from membrane of denervated frog muscle fibers. Nature 260, 799–802.

    Article  PubMed  CAS  Google Scholar 

  3. Hamill, O. P., Marty, A., Neher, E., Sackmann, B., and Sigworth, F. J. (1981) Improved patch-clamp techniques for high resolution current recording from cells and cell-free membrane patches. Pflügers Arch. 391, 85–100.

    Article  PubMed  CAS  Google Scholar 

  4. Jiang, Y. X., Lee, A., Chen, J. Y., Ruta, V., Cadene, M., Chait, B. T., and MacKinnon, R. (2003) X-ray structure of a voltage-dependent K+ channel. Nature 423, 33–41.

    Article  PubMed  CAS  Google Scholar 

  5. Bashford, C. L. (2004) Ion permeation of pores in model membranes: selectivity, fluctuations and the role of surface charge. Eur. Biophys. J. 33, 280–282.

    Article  PubMed  Google Scholar 

  6. Lev, A. A., Korchev, Y. E., Rostovtseva, T. K., Bashford, C. L., Edmonds, D. T., and Pasternak, C. A. (1993) Rapid switching of ion current in narrow pores: implications for biological ion channels. Proc. R. Soc. Lond. B. 252, 187–192.

    Article  CAS  Google Scholar 

  7. Pasternak, C. A., Bashford, C. L., Korchev, Y. E., Rostovtseva, T. K., and Lev A. A. (1993) Modulation of surface flow by divalent cations and protons. Colloids Surfaces A: Physicochem. Eng. Aspects 77, 119–124.

    Article  Google Scholar 

  8. Pasternak, Y. E., Alder, G. M., Apel, P. Y., Bashford, C. L., Korchev, Y. E., Lev, A. A., Rostovtseva, T. K., and Zhitariuk, N. I. (1995) Model pores for biological membranes: the properties of track-etched membranes. Nucl. Instr. Meth. in Phys. Res. B. 105, 332–334.

    Article  CAS  Google Scholar 

  9. Bashford, C. L., Alder, G. M., and Pasternak, C. A. (2002) Fluctuation of surface charge in a membrane pore. Biophys. J. 82, 2032–2040.

    PubMed  CAS  Google Scholar 

  10. Siwy, Z., Gu, Y., Spohr, H. A., Baur, D., Wolf-Reber, A., Spohr, R., Apel, P., and Korchev, Y. E. (2002) Rectification and voltage gating of ion currents in a nanofabricated pore. Europhys. Lett. 60, 349–355.

    Article  CAS  Google Scholar 

  11. Siwy, Z. and Fulinski, A. (2002) Origin of 1/f alpha noise in membrane channel currents. Phys. Rev. Lett. 89, 1–4.

    Google Scholar 

  12. Siwy, Z., Apel, P., Baur, D., Dobrev, D. D., Korchev, Y. E., Neumann, R., Spohr, R., Trautmann, C., and Voss, K.-O. (2003) Preparation of synthetic nanopores with transport properties analogous to biological channels. Surface Sci. 532–535, 1061–1066.

    Article  CAS  Google Scholar 

  13. Apel, P., Korchev, Y. E., Siwy, Z., Spohr, R. and Yoshida, M. (2001) Diode-like single-ion track membrane prepared by electro-stopping. Nucl. Instr. Meth. Phys. Res. B 184, 337–346.

    Article  CAS  Google Scholar 

  14. Martin, C. R., Nishizawa, M., Jirage, K., and Kang, M. (2001) Investigations of the transport properties of gold nanotubule membranes. J. Phys. Chem. B 105, 1925–1934.

    Article  CAS  Google Scholar 

  15. Martin, C. R., Nishizawa, M., Jirage, K., Kang, M., and Lee, S. B. (2001) Controlling ion-transport selectivity in gold nanotubule membranes. Adv. Mat. 13, 1351–1362.

    Article  CAS  Google Scholar 

  16. Woermann, D. (2002) Analysis of non-ohmic electrical current-voltage characteristic of membranes carrying a single track-etched conical pore. Nucl. Instrum. Meth. B 194, 458–462.

    Article  CAS  Google Scholar 

  17. Woermann, D. (2003) Electrochemical transport properties of a cone-shaped nanopore: high and low electrical conductivity states depending on the sign of an applied electrical potential difference. Phys. Chem. Chem. Phys. 5, 1853–1858.

    Article  CAS  Google Scholar 

  18. Ramírez, P., Mafé, S., Aguilella, V. M., and Alcaraz, A. (2003) Synthetic nanopores with fixed charges: an electrodiffusion model for ionic transport. Phys. Rev. E 68, 1–8.

    Article  CAS  Google Scholar 

  19. Ramírez, P., Mafé, S., Alcaraz, A., and Cervera, J. (2003) Modeling of pH-switchable ion transport and selectivity in nanopore membranes with fixed charges. J. Phys. Chem. B. 107, 13178–13187.

    Article  CAS  Google Scholar 

  20. Siwy, Z. and Fulinski, A. (2004) A nanodevice for rectification and pumping ions. Am. J. Phys. 72, 567–574.

    Article  CAS  Google Scholar 

  21. Fulinski, A., Kosinska, I. D., and Siwy, Z. (2004) On the validity of continuous modelling of ion transport through nanochannels. Europhys. Lett. 67, 683–689.

    Article  CAS  Google Scholar 

  22. Siwy, Z., Kosinska, I. D., Fulinski, A., and Martin, C. R. (2005) Asymmetric diffusion through synthetic nanopores. Phys. Rev. Lett. 94, 04812.

    Article  CAS  Google Scholar 

  23. Mara, A., Siwy, Z., Trautmann, C., Wan, J., and Kamme, F. (2004) An asymmetric polymer nanopore for single molecule detection. Nanoletters 4, 497–501.

    CAS  Google Scholar 

  24. Li, J., Stein, D., McMullan, C., Branton, D., Aziz, M., and Golovchenko, J. A. (2001) Ion-beam sculpting at nanometer length scales. Nature 412, 166–169.

    Article  PubMed  CAS  Google Scholar 

  25. Li, J., Gershow, M., Stein, D., Brandin, E., and Golovchenko, J. A. (2003) DNA molecules and configurations in a solidstate nanopore microscope. Nat. Mater. 2, 611–615.

    Article  PubMed  CAS  Google Scholar 

  26. Ashcroft, F., Benos, D., Bezanilla, F., et al. (2004) The state of ion channel research in 2004. Nat. Rev. Drug Discov. 3, 239–278.

    Article  Google Scholar 

  27. Kuyucak, S., and Bastug, T. (2003) Physics of ion channels. J. Biol. Phys. 29, 429–446.

    Article  CAS  Google Scholar 

  28. Domene, C., Haider, S., and Sansom, M. S. (2003) Ion channel structures: a review of recent progress. Curr. Opin. Drug Discov. Develop. 6, 611–619.

    CAS  Google Scholar 

  29. Chung, S-H. and Kuyucak, S. (2002) Recent advances in ion channel research. Biochim. Biophys. Acta 1565, 267–286.

    Article  PubMed  CAS  Google Scholar 

  30. Chung, S.-H. and Kuyucak, S. (2002) Ion channels: recent progress and prospects. Eur. Biophys. J. 31, 283–293.

    Article  PubMed  CAS  Google Scholar 

  31. Tieleman, P., Biggin, P. C., Smith, G. R., and Sansom, M. S. P. (2001) Simulation approaches to ion channel structure-function relationships. Q. Rev. Biophys. 4, 473–561.

    Google Scholar 

  32. Kuyucak, S., Andersen, O. S., and Chung, S.-H. (2001) Models of permeation in ion channels. Rep. Prog. Phys. 64, 1427–1472.

    Article  CAS  Google Scholar 

  33. Eisenberg, B. (2003) Proteins, channels and crowded ions. Biophys. Chem. 100, 507–517.

    Article  PubMed  CAS  Google Scholar 

  34. Eisenberg, B. (1998) Ionic channels in biological membranes: electrostatic analysis of a natural nanotube. Contemp. Phys. 39, 447–466.

    Article  CAS  Google Scholar 

  35. Roux, B., Allen, T., Bernèche, S., and Im, W. (2004) Theoretical and computational models of biological ion channels. Q. Rev. Biophys. 37, 15–103.

    Article  PubMed  CAS  Google Scholar 

  36. Parsegian, V. A. (1969) Energy of an ion crossing a low dielectric membrane: solutions to four relevant electrostatic problems. Nature 221, 844–846.

    Article  PubMed  CAS  Google Scholar 

  37. Graf, P., Kurnikova, M. G., Coalson, R. D., and Nitzan, A. (2004) Comparison of dynamic lattice Monte Carlo simulations and the dielectric self-energy Poisson-Nerst-Planck continuum theory for model ion channels. J. Phys. Chem. B. 108, 2006–2015.

    Article  CAS  Google Scholar 

  38. Nadler, B., Hollerbach, U., and Eisenberg, R. S. (2003) Dielectric boundary force and its crucial role in gramicidin. Phys. Rev. E 68, 1–9.

    Article  CAS  Google Scholar 

  39. Nonner, W., Chen, D. P., and Eisenberg, B. (1999) Progress and prospects in permeation. J. Gen. Physiol. 113, 773–782.

    Article  PubMed  CAS  Google Scholar 

  40. Aguilella, V. M. and Bezrukov, S. M. (2001) Alamethicin channel conductance modified by lipid titration. Eur. Biophys. J. 30, 233–241.

    Article  PubMed  CAS  Google Scholar 

  41. Rostovtseva, T. K., Aguilella, V. M., Vodyanoy, I., Bezrukov, S. M., and Parsegian, V. A. (1998) Membrane surface charge titrations probed by Gramicidin A channel. Biophys. J. 75, 1783–1792.

    PubMed  CAS  Google Scholar 

  42. Bezrukov, S. M., Vodyanoy, I., and Parsegian, V. A. (1994) Counting polymers moving through a single ion channel. Nature 370, 279–281.

    Article  PubMed  CAS  Google Scholar 

  43. Kasianowicz, J. J., Brandin, E., Branton, D., and Deamer, D. W. (1996) Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. U S A 93, 13770–13773.

    Article  PubMed  CAS  Google Scholar 

  44. Meller, A., Nivon, L., Brandin, E., Golovchenko, J., and Branton, D. (2000) Rapid nanopore discrimination between single polynucleotide molecules. Proc. Natl. Acad. Sci. U S A 97, 1079–1084.

    Article  PubMed  CAS  Google Scholar 

  45. Wang, H. and Branton, D. (2001) Nanopores with a spark for single molecule detection. Nat. Biotechnol. 19, 622–623.

    Article  PubMed  CAS  Google Scholar 

  46. Vercoutere, W., Winters-Hilt S., Olsen, H., Deamer, D., Haussler, D., and Akeson, M. (2001) Rapid discrimination among individual DNA hairpin molecules at single-nucleotide resolution using an ion channel. Nat. Biotechnol. 19, 248–252.

    Article  PubMed  CAS  Google Scholar 

  47. Howorka, S., Cheley S., and Bayley H. (2001) Sequence-specific detection of individual DNA strand using engineered nanopores. Nat. Biotechnol. 19, 636–639.

    Article  PubMed  CAS  Google Scholar 

  48. Song, L. Z., Hobaugh, M. R., Shustak, C., Cheley, S., Bayley, H., and Gouaux, J. E. (1996) Structure of Staphylococcal alpha-hemolysin, heptameric transmembrane pore. Science 274, 1859–1866.

    Article  PubMed  CAS  Google Scholar 

  49. Movileanu, L., Howorka, S., Braha, O., and Bayley, H. (2000) Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore. Nat. Biotechnol. 18, 1091–1095.

    Article  PubMed  CAS  Google Scholar 

  50. Van der Goot, F. G. and Matile, S. (2000) Sensing proteins outside of the box. Nat. Biotechnol. 18, 1037.

    Article  PubMed  Google Scholar 

  51. Siwy, Z., Dobrev, D., Neumann, R., Trautmann, C., and Voss, K. (2003) Electro-responsive asymmetric nanopores in polyimide with stable ion-current signal. Appl. Phys. A 76, 781–785.

    Article  CAS  Google Scholar 

  52. Chen, P., Gu, J., Brandin, E., Kim, Y-R., Wang, Q., and Branton, D. (2004) Probing single DNA molecule transport using fabricated nanopores. Nanoletters 4, 2293–2298.

    CAS  Google Scholar 

  53. Muthukumar, M. (1997) Dynamics of polyelectrolyte solutions. J. Chem. Phys. 107, 2619–2635.

    Article  CAS  Google Scholar 

  54. Muthukumar, M. (1999) Polymer translocation through a hole. J. Chem. Phys. 111, 10371–10374.

    Article  CAS  Google Scholar 

  55. Muthukumar, M. (2001) Translocation of confined polymer through a hole. Phys. Rev. Lett. 86, 3188–3191.

    Article  PubMed  CAS  Google Scholar 

  56. Muthukumar, M. (2002) Theory of sequence effects on DNA translocation through proteins and nanopores. Electrophoresis 23, 1417–1420.

    Article  PubMed  CAS  Google Scholar 

  57. Kong, C. Y. and Muthukumar, M. (2002) Modeling of polynucleotide translocation through protein pores and nanotubes. Electrophoresis 23, 2697–2703.

    Article  PubMed  CAS  Google Scholar 

  58. Meler, A. (2003) Dynamics of polynucleotide transport through nanometer-scale pores. J. Phys. Condens. Matter 15, R581-R607.

    Article  Google Scholar 

  59. Lubensky, D. K. and Nelson, D. R. (1999) Driven polymer translocation through a narrow pore. Biophys. J. 77, 1824–1838.

    PubMed  CAS  Google Scholar 

  60. Mulder, M. (1996) Basic Principles of Membrane Technology. Kluwer Acad. Pub., Dordrecht, The Netherlands.

    Google Scholar 

  61. Lakshminarayanaiah, N. (1984) Equations of Membrane Biophysics. Academic Press, New York.

    Google Scholar 

  62. Bockris, J. O'M. and Reddy, A. K. N. (1970) Modern Electrochemistry. Plenum, New York.

    Google Scholar 

  63. Eisenberg, R. S. (1996) Computing the field in proteins and channels. J. Membrane Biol. 150, 1–25.

    Article  CAS  Google Scholar 

  64. Buck, R. P. (1984) Kinetics of bulk and interfacial ionic motion-microscopic bases and limits for the Nernst-Planck equation applied to membrane systems. J. Membrane Sci. 17, 1–62.

    Article  CAS  Google Scholar 

  65. Helffreich, F. (1962) Ion Exchange, McGraw-Hill: New York.

  66. Chen, D., Lear, J., and Eisenberg, B. (1997) Permeation through an open channel: Poisson-Nernst-Planck theory of a synthetic ionic channel. Biophys. J. 72, 97–116.

    PubMed  CAS  Google Scholar 

  67. Kurnikova, M. G., Coalson, R. D., Graf, P., and Nitzan, A. (1999) A lattice relaxation algorithm for 3D Poisson-Nernest-Planck theory with application to ion transport through the gramicidin A channel. Biophys. J. 76, 642–656.

    Article  PubMed  CAS  Google Scholar 

  68. Morrison, F. A. and Osterle, J. F. (1965) Electrokinetic energy conversion in ultrafine capillaries. J. Chem. Phys. 43, 2111–2115.

    Article  CAS  Google Scholar 

  69. Gross, R. J. and Osterle, J. F. (1968) Membrane transport characteristics of ultrafine capillaries. J. Chem. Phys. 49, 228–234.

    Article  PubMed  CAS  Google Scholar 

  70. Fair, J. C. and Osterle, J. F. (1971) Reversed electrodialysis in charged capillary membranes. J. Chem. Phys. 54, 3307–3316.

    Article  CAS  Google Scholar 

  71. Westermann-Clark, G. B. and Anderson, J. L. (1983) Experimental verification of the space-charge model for electrokinetics in charged microporous membranes. J. Electrochem. Soc. 130, 839–847.

    Article  CAS  Google Scholar 

  72. Westermann-Clark, G. B. and Christoforou, C. C. (1986) The exclusion-diffusion potential in charged porous membranes. J. Electroanal. Chem. 198, 213–231.

    Article  CAS  Google Scholar 

  73. Aguilella, V. M., Aguilella-Arzo, M. and Ramírez, P. (1996) Electrokinetic phenomena in microporous membranes with a fixed transverse charge distribution. J. Membrane Sci. 113, 191–204.

    Article  CAS  Google Scholar 

  74. Aguilella, V. M., Belaya, M. and Levadny, V. (1997) Passive transport of small ions through human stratum corneum. J. Control. Release 44, 11–18.

    Article  CAS  Google Scholar 

  75. Levadny, V. and Aguilella, V. M. (2001) Reversal potential of a wide ion channel. Non-uniform charge distribution effects. J. Phys. Chem. B 105, 9902–9908.

    Article  CAS  Google Scholar 

  76. Zambrowicz, E. B. and Colombini, M. (1993) Zero-current potentials in a large membrane channel: a simple theory accounts for complex behavior. Biophys. J. 65, 1093–1100.

    Article  PubMed  CAS  Google Scholar 

  77. Levitt, D. G. (1986) Interpretation of biological ion channel flux data: reaction-rate versus continuum theory. Annu. Rev. Biophys. Biophys. Chem. 15, 29–57.

    Article  PubMed  CAS  Google Scholar 

  78. Levitt, D. G. (1978) Electrostatic calculations for an ion channel. 1. Energy and potential profiles and interactions between ions. Biophys. J. 22, 209–219.

    Article  PubMed  CAS  Google Scholar 

  79. Levitt, D. G. (1978) Electrostatic calculations for an ion channel. 2. Kinetic-behavior of gramicidin-a channel. Biophys. J. 22, 221–248.

    PubMed  CAS  Google Scholar 

  80. Jordan, P. C. (1982) Electrostatic modeling of ion pores: energy barriers and electric-field profiles. Biophys. J. 39, 157–164.

    PubMed  CAS  Google Scholar 

  81. Jordan, P. C. (1983) Electrostatic modeling of ion Pores. 2. Effects attributable to the membrane dipole potential. Biophys. J. 41, 189–195.

    PubMed  CAS  Google Scholar 

  82. Simonson, T. (2001) Macromolecular electrostatics: continuum models and their growing pains. Curr. Op. Struct. Biol. 11, 243–252.

    Article  CAS  Google Scholar 

  83. Corry, B., Kuyucak, S. and Chung, S. H. (1999) Test of Poisson-Nernst-Planck in ion channels. J. Gen. Physiol. 114, 597–599.

    Article  PubMed  CAS  Google Scholar 

  84. Corry, B., Kuyucak, S. and Chung, S. H. (2000) Invalidity of continuum theories of electrolytes in nanopores. Chem. Phys. Lett. 320, 35–41.

    Article  CAS  Google Scholar 

  85. Miller, C. (1999) Ionic hoping defended. J. Gen. Physiol. 113, 783–787.

    Article  PubMed  CAS  Google Scholar 

  86. Grasser, T., Tang, T. W., Kosina, H. and Selberherr, S. (2003). A review of hydrodynamic and energy-transport models for semiconductor device simulation. Proc. IEEE 91, 251–274.

    Article  CAS  Google Scholar 

  87. Jacoboni, C. and Lugli, P. (1989). The Monte Carlo Method for Semiconductor Device Simulation. Springer-Verlag, New York.

    Google Scholar 

  88. Selberherr, S. (1984). Analysis and Simulation of Semiconductor Devices Springer-Verlag, New York.

    Google Scholar 

  89. Basu, S. and Sharma, M. M. (1997) An improved space-charge model for flow through charged microporous membranes. J. Membrane Sci. 124, 77–91.

    Article  CAS  Google Scholar 

  90. Cervera, J., Manzanares, J. A. and Mafé, S. (2001) Ion size effects on the streaming potential of narrow charged pores. Phys. Chem. Chem. Phys. 3, 2493–2496.

    Article  CAS  Google Scholar 

  91. Cervera, J., Manzanares, J. A. and Mafé, S. (2001) Ion size effects on the current efficiency of narrow charged pores. J. Membrane Sci. 191, 179–187.

    Article  CAS  Google Scholar 

  92. Cervera, J., Manzanares, J. A. and Mafé, S. (2003) Ion size effects on the electrokinetic flow in nanoporous membranes caused by concentration gradients. J. Phys. Chem. B 10, 8300–8309.

    Article  CAS  Google Scholar 

  93. Marconi, U. M. B. and Tarazona, P. (1999) Dynamic density functional theory of fluids. J. Chem. Phys. 110, 8032–8044.

    Article  CAS  Google Scholar 

  94. Penna, F., Tarazona, P (2003) Dynamic density functional theory for steady currents: application to colloidal particles in narrow channels. J. Chem. Phys. 119, 1766–1776.

    Article  CAS  Google Scholar 

  95. Frink, L. J. D., Thompson, A. and Salinger, A. G. (2000) Applying molecular theory to steady-state diffusing systems. J. Chem. Phys., 112, 7564–7571.

    Article  CAS  Google Scholar 

  96. Gillespie, D., Nonner, W. and Eisenberg, R.S. (2002) Coupling Poisson-Nernst-Planck and density functional theory to calculate ion flux. J. Phys. Condens. Matter 14, 12129–12145.

    Article  CAS  Google Scholar 

  97. Davis, M. E., Madura, J. D., Luty, B. A. and McCammon, J. A. (1991) Electrostatics and diffusion of molecules in solution: simulations with the University of Houston Brownian Dynamics Program. Comp. Phys. Comm. 62, 187–197.

    Article  CAS  Google Scholar 

  98. Madura, J. D., Briggs, J. M., Wade, R. C., et al. (1995) Electrostatics and diffusion in solution: simulations with the University of Houston Brownian Dynamics Program. Comp. Phys. Comm. 91, 57–95.

    Article  CAS  Google Scholar 

  99. Karplus, M. and McCammon, J.A. (2002) Molecular dynamics simulations of biomolecules. Nat. Struct. Biol. 9, 646–788.

    Article  PubMed  CAS  Google Scholar 

  100. Roux, B. (2002) Theoretical and computational models of ion channels. Curr. Op. Struct. Biol. 12, 182–189.

    Article  CAS  Google Scholar 

  101. Weiner, S. J., Kollman, P. A., Case, D. A., et al. (1984), A new force field for molecular mechanical simulation of nucleic acids and proteins. J. Am. Chem. Soc. 106, 765–784.

    Article  CAS  Google Scholar 

  102. Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S. and Karplus, M. (1983) CHARMM: a program for macromolecular energy minimization and dynamics calculations. J. Comp. Chem. 4, 187–217.

    Article  CAS  Google Scholar 

  103. Hermans, J., Berendsen, H. J. C., Van Gusteren, W. F., and Postma, J. P. M. (1984) A consistent empirical potential for water-protein interactions. Biopolymers 23, 1513–1518.

    Article  CAS  Google Scholar 

  104. Lindahl, E., Hess, B. and van der Spoel, D. (2001) GRO-MACS 3.0: a package for molecular simulation and trajectory analysis. J. Mol. Mod. 7, 306–317.

    CAS  Google Scholar 

  105. Tobias, D. J. (2001) Electrostatics calculations: recent methodological advances and applications to membranes. Curr. Op. Struct. Biol. 11, 253–261.

    Article  CAS  Google Scholar 

  106. Cárdenas, A. E., Coalson, R. D. and Kurnikova, M. G. (2000) Three-dimensional Poisson-Nernst-Planck theory studies: influence of membrane electrostatics on Gramicidin A channel conductance. Biophys. J. 79, 80–93.

    PubMed  Google Scholar 

  107. Levitt, D. G. (1999) Modeling of ion channels. J. Gen. Physiol. 113, 789–794.

    Article  PubMed  CAS  Google Scholar 

  108. Von Kitzing, E. (1999) Forces determining ion permeation. J. Gen. Physiol. 114, 593–596.

    Article  Google Scholar 

  109. Jimbo, T., Ramírez, P., Tanioka, A., Mafé, S., and Minoura, N. (2000) Passive transport of ionic drugs through membranes with pH-dependent fixed charges. J. Colloid Interface Sci. 225, 447–454.

    Article  PubMed  CAS  Google Scholar 

  110. Åkerman, S., Viinikka, P., Svarfvar, B., et al. (1998). Transport of drugs across porous ion exchange membranes. J. Control. Release 50, 153–166.

    Article  PubMed  Google Scholar 

  111. Pellicer, J., Mafé, S. and Aguilella, V. M. (1986) Ionic transport across porous, charged membranes and the Goldman Constant Field assumption. Ber. Bunsenges. Phys. Chem. 90, 867–872.

    CAS  Google Scholar 

  112. Ramírez, P., Alcaraz, A., Mafé, S., and Pellicer, J. (1999) pH and supporting electrolyte concentration effects on the passive transport of cationic and anionic drugs through fixed charge membranes. J. Membrane Sci. 161, 143–155.

    Article  Google Scholar 

  113. Ramírez, P. and Mafé, S. (1999) Ion equilibrium and transport in weak amphoteric membranes. In Surface Chemistry and Electrochemistry of Membranes (Sørensen, T. S. ed.), Surfactant Science Series, vol. 79, Marcel Dekker, New York, pp. 437–454.

    Google Scholar 

  114. Ramírez, P., Alcaraz, A. and Mafé, S. (2001) Modeling of amino acid Donnan equilibrium and electrodiffusion in fixed charge membranes. J. Colloid Interface Sci. 242, 164–173.

    Article  CAS  Google Scholar 

  115. Ramírez, P., Alcaraz, A., Mafé, S., and Pellicer, J. (2002) Donnan equilibrium of ionic drugs in pH-dependent fixed charge membranes: theoretical modeling. J. Colloid Interface Sci. 253, 171–179.

    Article  PubMed  CAS  Google Scholar 

  116. Ramírez, P., Mafé, S. and Tanioka, A. (2002) Transport of ionic drugs through synthetic fixed charge membranes. In Encyclopedia of Surface and Colloid Science (Hubbard, A., ed.) Marcel Dekker, New York, p. 3927.

    Google Scholar 

  117. Levitt, D. G. (1991) General continuum theory for multi-ion channel. II. Application to acetylcholine channel. Biophys. J. 59, 278–288.

    PubMed  CAS  Google Scholar 

  118. Nonner, W. and Eisenberg, B. (1998) Ion permeation and glutamate residues linked by Poisson-Nernst-Planck theory in L-type calcium channels. Biophys. J. 75, 1278–1305.

    Article  Google Scholar 

  119. Chen, D., Xu, L., Tripathy, A., Meissner, G. and Eisenberg, B. (1999) Selectivity and permeation in calcium release channel of cardiac muscle: alkali metal ions. Biophys. J. 76, 1346–1366.

    PubMed  CAS  Google Scholar 

  120. Chen, D. P., Tang, J. and Eisenberg, B., (2002) Structure-function study of porins. Biological conduction processes. In: Technical Proceedings of the 2002 International Conference on Computational Nanoscience and Nanotechnology. Nano Science and Technology Institute, Danville, CA, pp. 64–67.

    Google Scholar 

  121. Alcaraz, A., Nestorovich, E.M., Aguilella-Arzo, M., Aguilella, V. M. and Bezrukov, S. M. (2004) Salting out the ionic selectivity of a wide channel: the asymmetry of OmpF. Biophys. J. 87, 943–957.

    Article  PubMed  CAS  Google Scholar 

  122. Ninham, B. W. and Parsegian, V. A. (1971) Electrostatic potential between surfaces bearing ionizable groups in ionic equilibrium with physiologic saline solution. J. Theor. Biol. 31, 405–428.

    Article  PubMed  CAS  Google Scholar 

  123. Gillespie, D. and Eisenberg, R. S. (2001) Modified Donnan potentials for ion transport through biological ion channels. Phys. Rev. E 63, 061902.

    Article  CAS  Google Scholar 

  124. Im, W. and Roux, B. (2002) Ion permeation and selectivity of OmpF porin: a theoretical study based on molecular dynamics, Brownian dynamics and continuum electrodiffusion theory. J. Mol. Biol. 322, 851–869.

    Article  PubMed  CAS  Google Scholar 

  125. Apel, P. Y., Didyk, A. Y., Kravets, L. I. and Kuznetsov, V. I. (1990) Track structure in some heavy-ion irradiated plastic films. Nucl. Tracks Radiat. Meas. 17, 191–193.

    Article  CAS  Google Scholar 

  126. Nishizawa, M., Menon, V. P. and Martin, C. R. (1995) Metal nanotubule membranes with electrochemically switchable ion-transport selectivity. Science 268, 700–702.

    Article  CAS  PubMed  Google Scholar 

  127. Rostovtseva, T. K., Bashford, C. L., Alder, G. M., et al. (1996) Diffusion through narrow pores: movement of ions, water and nonelectrolytes through track-etched PETP membranes. J. Membrane Biol. 151, 29–43.

    Article  CAS  Google Scholar 

  128. Sørensen, T. S. and Rivera, S. R. (1999) Electrochemical characterization of membranes and membrane surfaces by EMF measurements. In Surface Chemistry and Electrochemistry of Membranes (Sørensen, T. S., ed.). Surfactant Science Series, Marcel Dekker, New York.

    Google Scholar 

  129. Jaskari, T., Vuorio, M., Kontturi, K., Manzanares, J. A., and Hirvonen, J. (2001) Ion-exchange fibers and drugs: part I an equilibrium study. J. Control. Release 70, 219–229.

    Article  PubMed  CAS  Google Scholar 

  130. Tatulian, S. A. (1999) Surface electrostatics of biological membranes and ion binding. In Surface Chemistry and Electrochemistry of Membranes (Sørensen, T. S., ed.) Surfactant Science Series, Marcel Dekker, New York, pp. 871–921.

    Google Scholar 

  131. Hill, T. L. (1985) Cooperative Theory in Biochemistry, Springer-Verlag, New York.

    Google Scholar 

  132. Lee, S. B. and Martin, C. R. (2001) pH-switchable, ion-permseletive gold nanotubule membrane based on chemisorbed cysteine. Anal. Chem. 73, 768–775.

    Article  PubMed  CAS  Google Scholar 

  133. Lee, S. B. and Martin, C. R. (2001) Controlling the transport properties of gold nanotubule membranes using chemisorbed thiols. Chem. Mat. 13, 3236–3244.

    Article  CAS  Google Scholar 

  134. Hulteen, J. C., Jirage, K. B. and Martin, C. R. (1998) Introducing chemical transport selectivity into gold nanotubule membranes. J. Am. Chem. Soc. 120, 6603–6604.

    Article  CAS  Google Scholar 

  135. Hou, Z., Abbott, N. L. and Stroeve, P. (2000) Self-assembled monolayers on electroless gold impart pH-responsive transport of ions in porous membranes. Langmuir 16, 2401–2404.

    Article  CAS  Google Scholar 

  136. Chun, K.-Y. and Stroeve, P. (2001) External control of ion transport in nanoporous membranes with surfaces modified with self-assembled monolayers. Langmuir 17, 5271–5275.

    Article  CAS  Google Scholar 

  137. Chun, K.-Y. and Stroeve, P. (2002) Protein transport in nanoporous membranes modified with self-assembled monolayers of functionalized thiols. Langmuir 18, 4653–4658.

    Article  CAS  Google Scholar 

  138. Yu, S., Lee, S. B., Kang, M. and Martin, C. R. (2001) Size-based protein separations in poly(ethylene glycol)-derivatized gold nanotubule membranes. Nanoletters 1, 495–498.

    CAS  Google Scholar 

  139. Kang, M. and Martin, C. R. (2001) Investigations of potential-dependent fluxes of ionic permeates in gold nanotubule membranes prepared via the template method. Langmuir 17, 2753–2759.

    Article  CAS  Google Scholar 

  140. Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992) Numerical Recipes in Fortran 77: The Art of Scientific Computing, Cambridge University Press, New York.

    Google Scholar 

  141. Ramírez, P., Alcaraz, A., Mafé, S., and Pellicer, J. (1997) Model calculations of ion transport against its concentration gradient when the driving force is a pH difference across a charged membrane. J. Membrane Sci. 135, 135–144.

    Article  Google Scholar 

  142. Ramírez, P., Mafé, S., Tanioka, A. and Saito, K. (1997) Modeling of membrane potential and ionic flux in weak amphoteric polymer membranes. Polymer 38, 4931–4934.

    Article  Google Scholar 

  143. Robinson, R. A. and Stokes, R. H. (1995) Electrolyte Solutions, Butterworths Scientific Publications, London.

    Google Scholar 

  144. Kanicky, J. R. and Shah, D. O. (2002) Effect of degree, type, and position of unsaturation on the pK(a) of long-chain fatty acids. J. Colloid. Interface Sci. 256, 201–207.

    Article  PubMed  CAS  Google Scholar 

  145. Rmaile, H. H. and Schlenoff, J. B. (2002) Internal pKa's in polyelectrolyte multilayers: coupling protons and salt. Langmuir 18, 8263–8265.

    Article  CAS  Google Scholar 

  146. Nonner, W., Chen, D. P. and Eisenberg, B. (1998) Anomalous mole fraction effect, electrostatics, and binding in ionic channels. Biophys. J. 74, 2327–2334.

    PubMed  CAS  Google Scholar 

  147. Mafé, S., Manzanares, J. A. and Pellicer, J. (1990) On the introduction of the pore wall charge in the space-charge model for microporous membranes. J. Membrane Sci. 51, 161–168.

    Article  Google Scholar 

  148. Kontturi, K., Mafé, S., Manzanares, J. A., Svarfvar, B. L., and Viinikka, P. (1996) Modeling of the salt and pH effects on the permeability of grafted porous membranes. Macromolecules 29, 5740–5746.

    Article  CAS  Google Scholar 

  149. Cowan, S. W., Schirmer, T., Rummel, G., et al. (1992) Crystal structures explain functional properties of two E. coli porins. Nature 358, 727–733.

    Article  PubMed  CAS  Google Scholar 

  150. Tieleman, D. P. and Berendsen, H. J. C. (1998) A molecular dynamics study of the pores formed by Escherichia coli OmpF porin in a fully hydrated palmitoyloleoylphosphatidylcholine bilayer. Biophys. J. 74, 2786–2801.

    PubMed  CAS  Google Scholar 

  151. Danelon, C., Suenaga, A., Winterhalter, M. and Yamato, I. (2003). Molecular origin of the cation selectivity in OmpF porin: single channel conductances vs. free energy calculation. Biophys. Chem. 104, 591–603.

    Article  PubMed  CAS  Google Scholar 

  152. García-Celma, J. J., Aguilella-Arzo, M., Alcaraz A., and Aguilella, V.M. (2004) Correlation between atomic structure and physiological function in OmpF porin: from pKa estimation of titratable residues to ionic selectivity. Unpublished results.

  153. Benz, R., Schmid, A. and Hancock, R. E. (1985) Ion selectivity of gram-negative bacterial porins. J. Bacteriol. 162, 722–727.

    PubMed  CAS  Google Scholar 

  154. Schirmer, T. and Phale, P. S. (1999) Brownian dynamics simulation of ion flow through porin channels. J. Mol. Biol. 294, 1159–1167.

    Article  PubMed  CAS  Google Scholar 

  155. Nestorovich, E. M., Rostovtseva, T. K. and Bezrukov, S. M. (2003). Residue ionization and ion transport through OmpF channels. Biophys. J. 85, 3718–3729.

    PubMed  CAS  Google Scholar 

  156. Nonner, W., Catacuzzeno, L. and Eisenberg, B. (2000) Binding and selectivity in L-Type calcium channels: a mean spherical approximation. Biophys. J. 79, 1976–1992.

    PubMed  CAS  Google Scholar 

  157. Miedema, H., Meter-Arkema, A., Wierenga, J., et al., (2004) Permeation properties of an engineered bacterial OmpF porin containing the EEEE-locus of Ca2+ channels. Biophys. J. 87, 3137–3147.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Aguilella.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramirez, P., Aguilella-Arzo, M., Alcaraz, A. et al. Theoretical description of the ion transport across nanopores with titratable fixed charges. Cell Biochem Biophys 44, 287–312 (2006). https://doi.org/10.1385/CBB:44:2:287

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:44:2:287

Index Entries

Navigation