Skip to main content
Log in

Biomedical applications of electrostatic layer-by-layer nano-assembly of polymers, enzymes, and nanoparticles

  • Review Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The introduction of electrostatic layer-by-layer (LbL) self-assembly has shown broad biomedical applications in thin film coating, micropatterning, nanobioreactors, artificial cells, and drug delivery systems. Multiple assembly polyelectrolytes and proteins are based on electrostatic interaction between oppositely charged layers. The film architecture is precisely designed and can be controlled to 1-nm precision with a range from 5 to 1000 nm. Thin films can be deposited on any surface including many widely used biomaterials. Microencapsulation of micro/nanotemplates with multilayers enabled cell surface modification, controlled drug release, hollow shell formation, and nanobioreactors. Both in vitro and in vivo studies indicate potential applications in biology, pharmaceutics, medicine, and other biomedical areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Decher, G. (1997) Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science 227, 1232–1237.

    Article  Google Scholar 

  2. Bertrand, P., Jonas, A., Laschevsky, A., and Legras, R. (2000) Ultrathin polymer coating by complexation of polyelectrolytes at interfaces: suitable materials, structure and properties. Macromol. Rapid Commun. 21, 319–348.

    Article  CAS  Google Scholar 

  3. Lvov, Y. Electrostatic layer-by-layer assembly of proteins and polyions. In Protein Architecture: Interfacial Molecular Assembly and Immobilization Biotechnology (Lvov, Y., and Möhwald, H. M., eds.). Dekker, New York, 2000, pp. 125–167.

    Google Scholar 

  4. Lvov, Y., Decher, G., and Möhwald, H. (1993) Assembly, structural characterization and thermal behavior of layer-by-layer deposited ultrathin films of polyvinylsulfate and polyallylamine. Langmuir 9, 481–486.

    Article  CAS  Google Scholar 

  5. Decher, G., Essler, F., Hong, J. D. Lowack, K., Schmitt, J., and Lvov, L. (1993) Layer-by-layer adsorbed films of polyelectrolytes, proteins or DNA. Polymer Preprints 34, 745–746.

    CAS  Google Scholar 

  6. Mendelsohn, J. D., Yang, S., Hiller, J., Hochbaum, A. I., and Rubner, M. F. (2003) Rational design of cytophilic and cytophobic polyelectrolyte multilayer thin films. Biomacromolecules 4, 96–106.

    Article  PubMed  CAS  Google Scholar 

  7. Elbert, D., Herbert, C., and Hubbell, J. (1999) Thin polymer layers formed by polyelectrolyte multilayer techniques on biological surfaces. Langmuir 15, 5355–5362.

    Article  CAS  Google Scholar 

  8. Schlenoff, J. Dubas, S., and Farhat, T. (2000) Sprayed polyelectrolyte multilayers. Langmuir 16, 9968–9969.

    Article  CAS  Google Scholar 

  9. Hua, F., Cui, T., and Lvov, Y. (2002) Lithographic approach to pattern self-assembled nanoparticle multilayers. Langmuir 18, 67123-#6715.

    Article  CAS  Google Scholar 

  10. Zheng, H., Lee, I., Rubner, M., and Hammond, P. Two component particle arrays on patterned polyelectrolyte multilayer templates. Adv. Mat. 14, 681.

  11. Ai, H., Lvov, Y. M., Mills, D. K., Alexander, J. S., and Jones, S. A. (2003) Coating and selective deposition of nanofilm on silicone rubber for endothelial cell adhesion and growth. Cell. Biochem. Biophys., 38, 103–114.

    Article  PubMed  CAS  Google Scholar 

  12. Lvov, Y. and Caruso, F. (2001) Biocolloids with ordered urease multilayer shells as enzymatic reactors. Anal. Chem. 73(17), 4212–4217.

    Article  PubMed  CAS  Google Scholar 

  13. Fang, M., Grant, P. S., McShane, M., Sukhorukov, G., Golub, V., and Lvov, Y. (2002) Magnetic bio/nanoreactor with multilayer shells of glucose oxidase and inorganic nanoparticles. Langmuir 18, 6338–6344.

    Article  CAS  Google Scholar 

  14. Ai, H., Fang, M., Jones, S. A., and Lvov, Y. (2002) electrostatic layer-by-layer nanoassembly on biological microtemplates. Platelets Biomacromolecules 3, 560–564.

    Article  CAS  Google Scholar 

  15. Qiu, X., Leporatti, S., Donath, E., and Möhwald, H. (2001) Studies on the drug release properties of polysaccharide multilayers encapsulated ibuprofen microparticles. Langmuir 17, 5375–5380.

    Article  CAS  Google Scholar 

  16. Ai, H., Jones, S. A., de Villiers, M. M., and Lvov, Y. (2003) Nano-encapsulation of furosemide microcrystals for controlled drug release. J. Control. Release 89, 59–68.

    Article  Google Scholar 

  17. Ho, P., Kim, J., Burroughes, J. H., et al. (2000) Molecular-scale interface engineering for polymer light-emitting diodes. Nature 404, 481–484.

    Article  PubMed  CAS  Google Scholar 

  18. Lee, J-K., Mattoussi, H., Yoo, D., Wu, A., and Rubner, M. (1997) Thin film light emitting heterostructures: from conjugated polymers to ruthenium complexes to inorganic nanocrystallites. Polymer Prep. 38, 351–352.

    CAS  Google Scholar 

  19. Gao, M., Richter, B., and Kirstein, S. (1997) White-light electroluminescent from self-assembled Q-CdS/PPV multilayer structures. Adv. Mater. 9, 802–805.

    Article  CAS  Google Scholar 

  20. Lvov, Y., Antipov, A. A., Mamedov, A., Möhwald, H., and Sukhorukov G. B. (2001) Urease encapsulation in nanoorganized microshells. Nano. Lett. 1, 125–128.

    Article  CAS  Google Scholar 

  21. Mao, G., Tsao, Y., Tirrell, M., Davis, H. T., Hessel, V., and Ringsdorf, H. (1995) Interaction, structure, and stability of photoreactive bolaform amphiphile multilayers. Langmuir 11, 942–952.

    Article  CAS  Google Scholar 

  22. Cheung, J., Fou, A., and Rubner, M. (1994) Molecular self-assembly of conducting polymers. Thin Solid Films 244, 985–989.

    Article  CAS  Google Scholar 

  23. Kleinfeld, E., and Ferguson, G. (1994) Stepwise formation of multilayered nanostructural films from macromolecular precursors. Science 265, 370–373.

    Article  PubMed  CAS  Google Scholar 

  24. He, J-A., Samuelson, L., Li, L., Kumar, J., and Tripathy, S. (1998) Oriented bacteriorhodopsin/polycation multilayers by electrostatic layer-by-layer assembly. Langmuir 14, 1674–1679.

    Article  CAS  Google Scholar 

  25. Ulman, A. An Introduction to Ultrathin Films, from Langmuir-Blodgett to Self-Assembly. Academic Press, Boston, 1991, pp. 1–440.

    Google Scholar 

  26. Sano, M. Lvov, Y. and Kunitake, T. (1996) Formation of ultrathin polymer layers on solid substrates by means of polymerization-induced epitaxy and alternate adsorption. Annu. Rev. Mater. Sci. 26, 153–187.

    Article  CAS  Google Scholar 

  27. Lvov, Y., Ariga, K., Ichinose, I., and Kunitake, K. (1995) Assembly of multicomponent protein films by means of electrostatic layer-by-layer adsorption. J. Am. Chem. Soc. 117, 6117–6123.

    Article  CAS  Google Scholar 

  28. Decher, G., Lvov, Y. and Schmitt, J. (1994) Proof of multilayer structural organization of polycation/polyanion self-assembled films. Thin Solid Films 244, 772–777.

    Article  CAS  Google Scholar 

  29. Yoo, D., Shiratori, S., and Rubner, M. (1998) Controlling bilayer composition and surface wettability of sequentially adsorbed multilayers of weak polyelectrolytes. Macromolecules 31, 4309–4318.

    Article  CAS  Google Scholar 

  30. Ratner, B. D. (1995) Surface modification of polymers: chemical, biological and surface analytical challenges. Biosens. Bioelectron 10(9–10), 797–804.

    Article  PubMed  CAS  Google Scholar 

  31. Ratner, B. D. (1993) New ideas in biomaterials science—a path to engineered biomaterials. J. Biomed. Mater. Res. 27, 837–850.

    Article  PubMed  CAS  Google Scholar 

  32. Lvov. Y. and Decher. G. (1994) Assembly of multilayer ordered films by alternating adsorption of oppositely charged macromolecules. Crystallog. Rep. 39, 628–647.

    Google Scholar 

  33. Schmitt, J., Grünewald, T., Krajer, K., Pershan, P., Decher, G., and Löshe, M. (1993) The internal structure of layer-by-layer adsorbed polyelectrolyte films: a neutron and X-ray reflectivity study. Macromolecules 26, 7058–7063.

    Article  CAS  Google Scholar 

  34. Cima, L. G. (1994) Polymer substrates for controlled biological interactions. J. Cell. Biochem. 56, 155–161.

    Article  PubMed  CAS  Google Scholar 

  35. Osterberg, E., Bergström, K., Holmberg, K., et al. (1995) Protein-rejecting ability of surface-bound dextran in end-on and side-on configurations: comparison to PEG. J. Biomed. Mater. Res. 29, 741–747.

    Article  PubMed  CAS  Google Scholar 

  36. Lvov, Y. Onda, M. Ariga, K., and Kunitake, T. (1998) Ultrathin films of charged polysaccharides assembled alternately with linear polyions. J. Biomater. Sci. Polym. Ed. 9, 345–355.

    PubMed  CAS  Google Scholar 

  37. Serizawa, T., Yamaguchi, M., and Akashi, M. (2002) Alternating bioactivity of polymeric layer-by-layer assemblies: anticoagulation vs procoagulation of human blood. Biomacromolecules 3, 724–731.

    Article  PubMed  CAS  Google Scholar 

  38. Hogt, A. H., Dankert, J., de Vries, J. A., and Feijen, J. (1983) Adhesion devices of coagulase-negative staphylococci to biomaterials. J. Gen. Microbiol. 129, 1959–1968.

    Google Scholar 

  39. An, Y. H., and Friedman, R. J. (1998) Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J. Biomed. Mater. Res. 43, 338–348.

    Article  PubMed  CAS  Google Scholar 

  40. An, Y. H., Bradley, J., Powers, D. L., and Friedman, R. J. (1997) In vivo study of preventing prosthetic infection using cross-linked albumin coating. J. Bone. Joint. Surg. 79, 816–819.

    Article  CAS  Google Scholar 

  41. Brynda, E. and Houska, M. Ordered multilayer assemblies: albumin/heparin for biocompatible coating and monoclonal antibodies for optical immunosensors. In Protein Architecture: Interfacial Molecular Assembly and Immobilization Biotechnology (Lvov, Y. and Möhwald, H., eds.). Dekker, New York, 2000, pp. 251–286.

    Google Scholar 

  42. Willoughby, D. A. ed. First International Workshop on Hyaluronan in Drug Delivery. Windsor, UK, Royal Society of Medicine Press, 1994.

    Google Scholar 

  43. Ai, H., Lvov, Y., Mills, D. K., et al. Coating bionanofilm on PDMS through layer-by-layer self-assembly. Proceedings of the Second Joint EMBS/BMES Conference, Houston, TX, 2002, pp. 608–609.

  44. Verheye, S., Markou, C. P., Salame, M. Y., et al. (2000) Reduced thrombus formation by hyaluronic acid coating of endovascular devices. Arterioscler. Thromb. Vasc. Biol. 20, 1168–1172.

    PubMed  CAS  Google Scholar 

  45. Bickel, C., Rupprecht, H. J., Darius, H., et al. (2001) Substantial reduction of platelet adhesion by heparin-coated stents. J. Intervent. Cardiol. 14, 407–413.

    Article  PubMed  CAS  Google Scholar 

  46. Maalej, N., Albrecht, R., Loscalzo, J., and Folts, J. D. (1999) The potent platelet inhibitory effects of S-nitrosated albumin coating of artificial surfaces. J. Am. Coll. Cardiol. 33, 1408–1414.

    Article  PubMed  CAS  Google Scholar 

  47. Carrozza, J. P. and Baim, D. S. (1995) Thrombotic and hemorrhagic complications of stenting coronary arteries: incidence, management, and prevention. J. Thromb. Thrombolysis 1, 289–297.

    Article  PubMed  Google Scholar 

  48. Galeska, I., Hickey, T., Moussy, F., Kreutzer, D., and Papadimitrakopoulos, F. Characterization and biocompatibility studies of novel humic acids based films as membrane material for an implantable glucose sensor. Biomacromolecules 2, 1249–1255.

  49. Bontempo, A. R. and Rapp, J. (1997) Proteinlipid interaction on the surface of a hydrophilic contact lens in vitro. Curr. Eye. Res. 16, 776–781.

    Article  PubMed  CAS  Google Scholar 

  50. Maissa, C., Franklin, V., Guillon, M., and Tighe, B. (1998) Influence of contact lens material surface characteristics and replacement frequency on protein and lipid deposition. Optometry Vision. Sci. 75, 697–705.

    Article  CAS  Google Scholar 

  51. Acton, C., Hoffman, G., McKenna, H., and Moloney, F. (1989) Silicone-induced foreign-body reaction after temporomandibular joint arthroplasty. Case report. Aust. Dent. J. 34, 228–232.

    PubMed  CAS  Google Scholar 

  52. Adams, W. P. J., Robinson, J. B. J., and Rohrich, R. J. (1998) Lipid infiltration as a possible biologic cause of silicone gel breast implant aging. Plast. Reconstr. Surg. 101, 64–68.

    Article  PubMed  Google Scholar 

  53. Carmen, R. and Mutha, S. C. (1972) Lipid absorption by silicone rubber heart valve poppets—in-vivo and in-vitro results. J. Biomed. Mater. Res. 6, 327–346.

    Article  PubMed  CAS  Google Scholar 

  54. Klemic, K., Klemic, J., Reed, M., and Sigworth, F. (2002) Micromolded PDMS planar electrode allows patch clamp electrical recordings from cells. Biosens. Bioelectron 17, 597–604.

    Article  PubMed  CAS  Google Scholar 

  55. Ai, H., Fang, M., Lvov, Y., Mills, D., Alexander, J., and Jones, S. (2002) Coating poly-d-lysine nano-film on PDMS for endothelial cell adhesion and growth. FASEB J. 16(4), A36.

    Google Scholar 

  56. Chen, W. and McCarthy, T. J. (1997) Layer-by-layer deposition: a tool for polymer surface modification. Macromolecules 30, 78–86.

    Article  CAS  Google Scholar 

  57. Levasalmi, J. and McCarthy, T. J. (1997) Poly(4-methyl-1-pentene)-supported polyelectrolyte multilayer films: preparation and gas permeability. Macromolecules 30, 1752–1757.

    Article  Google Scholar 

  58. Deutsch, J., Motlagh, D., Russell, B., and Desai, T. A. (2000) Fabrication of microtextured membranes for cardiac myocyte attachment and orientation. J. Biomed. Mater. Res. 53, 267–275.

    Article  PubMed  CAS  Google Scholar 

  59. Mata, A., Boehm, C., Fleischman, A. J., Muschler, G., and Roy, S. (2002) Growth of connective tissue progenitor cells on microtextured polydimethylsiloxane surfaces. J. Biomed. Mater. Res. 62, 499–506.

    Article  PubMed  CAS  Google Scholar 

  60. Lvov, Y., Decher, G., and Sukhorukov, G. (1993) Assembly of thin films by means of successive deposition of alternate layers of DNA and poly(allylamine). Macromolecules 26, 5396–5399.

    Article  CAS  Google Scholar 

  61. Decher, G., Lehr, B., Lowack, K., Lvov, Y., and Schmitt, J. New nanocomposite films for biosensors: layer-by-layer adsorbed films of polyelectrolytes, proteins or DNA. Biosens. Bioelectron 9, 677–684.

  62. Sukhorukov, G., Möhwald, H., Decher, G., and Lvov, Y. (1996) Layer-by-layer assembly of DNA and polynucleotides films by means of alternate adsorption with polycations. Thin Solid Films 284, 220–223.

    Article  Google Scholar 

  63. Kayushina, R., Lvov, Y., Stepina, N., and Khurgin, Y. (1996) Construction and X-ray reflectivity study of self-assembled lysozyme/polyions multilayers. Thin Solid Films 284, 246–248.

    Article  Google Scholar 

  64. Onda, M., Lvov, Y., Ariga, K., and Kunitake, T. (1996) Sequential reactions by glucose oxidase/peroxidase molecular films assembled by layer-by-layer alternate adsorption. Biotechnol. Bioeng. 51, 163–166.

    Article  PubMed  Google Scholar 

  65. Onda, M., Lvov, Y., Ariga, K., and Kunitake, T. Sequential reaction and product separation on molecular films of glucoamylase and glucose oxidase assembled on an ultrafilter. J. Ferment. Bioengin. 82, 502–506.

  66. Lvov, Y. and Sukhorukov, G. B. (1997) Protein architecture: assembly of ordered films by means of alternated adsorption of oppositely charged macromolecules. Membr. Cell. Biol. 11, 277–303.

    PubMed  Google Scholar 

  67. Kong, W., Wang, L., Gao, M., Zhou, H., Zhang, X., Li, W., and Shen, J. (1994) Immobilized bilayer glucose isomerase in porous trimethylamine polystyrene based on molecular deposition. J. Chem. Soc. Chem. Comm. 11, 1297–1298.

    Article  Google Scholar 

  68. Lvov, Y., Ariga, K., and Kunitake, T. (1994) Layer-by-layer assembly of alternate protein/polyion ultrathin films. Chem. Lett. 2323–2326.

  69. Kong, J., Lu, Z., Lvov, Y., Desamero, R., Frank, H., and Rusling, J. (1998) Direct electrochemistry of cofactor redox sites in bacterial photosynthetic reaction center protein. J. Am. Chem. Soc. 120, 7371–7372.

    Article  CAS  Google Scholar 

  70. Kong, J., Sun, W., Wu, X., Deng, J., Lvov, Y., Desamero, R., Frank, H., and Rusling, J. (1999) Fast reversible electron transfer from photosynthetic reaction center from wild type Rhodobacter spheroids reconstituted in polycation sandwiched monolayer film. Bioelectrochem. Bioeng. 48, 101–107.

    Article  CAS  Google Scholar 

  71. Caruso, F., Niikura, K., Furlong, N., and Okahata, Y. (1997) Assembly of alternating polyelectrolyte and protein multilayer films for immunosensing. Langmuir 13, 3427–3433.

    Article  CAS  Google Scholar 

  72. Onda, M., Ariga, K., and Kunitake, T. (1999) Activity and stability of glucose oxidase in molecular films assembled alternately with polyions. J. Biosci. Bioeng. 87, 69–75.

    Article  PubMed  CAS  Google Scholar 

  73. Singhvi, R., Kumar, A., Lopez, G. P., et al. (1994) Engineering cell shape and function. Science 264, 696–698.

    Article  PubMed  CAS  Google Scholar 

  74. Biebuyck, H. A., and Whitesides, G. M. (1994) Self-organization of organic liquids on patterned self-assembled monolayers of alkanethiolates on gold. Langmuir 10, 2790–2793.

    Article  CAS  Google Scholar 

  75. Chen, K., Jiang, X., Kimerling, L., and Hammond, P. (2000) selective self-organization of coll oids on patterned polyelectrolyte templates. Langmuir 16, 7825–7834.

    Article  CAS  Google Scholar 

  76. Inerowicz, H. D., Howell, S., Regnier, F. E., and Reifenberger, R. (2002) Multiprotein immunoassay arrays fabricated by microcontact printing. Langmuir 18, 5263–5268.

    Article  CAS  Google Scholar 

  77. Langer, R. (1998) Drug delivery and targeting. Nature 392, 5–10.

    PubMed  CAS  Google Scholar 

  78. Jalil, R., and Nixon, J. R. (1990) Biodegradable poly(lactic acid) and poly(lactide-co-glycolide) microcapsules — problems associated with preparative techniques and release properties. J. Microencapsul. 7(3), 297–325.

    Article  PubMed  CAS  Google Scholar 

  79. Wu, X. S. Preparation, characterization, and drug delivery applications of microspheres based on biodegradable lactic/glycolic acid polymers. In Encyclopedic Handbook of Biomaterials and Bioengineering (Wise, et al., eds.). New York: Marcel Dekker, 1995, pp. 1151–1200.

    Google Scholar 

  80. Arshady, R. (1991) Preparation of biodegradable microspheres and microcapsules: 2. Polylactides and related polyesters. J. Control. Rel. 17, 1–22.

    Article  CAS  Google Scholar 

  81. Park, J. W., Hong, K., Kirpotin, D., Papahajopoulos, D., and Benz, C. C. (1997) Immunoliposomes for cancer treatment. Adv. Pharmacol. 40, 399–435.

    Article  PubMed  CAS  Google Scholar 

  82. Moya, S., Donath, E., Sukhorukov, G. B., et al. (2000) Lipid coating on polyelectrolyte surface modified colloidal particles and polyelectrolyte capsules. Macromolecules 33, 4538–4544.

    Article  CAS  Google Scholar 

  83. LaVan, D. A., Lynn, D. M., and Langer, R. (2002) Moving smaller in drug discovery and delivery. Nat. Rev. Drug. Disc. 1, 77–84.

    Article  CAS  Google Scholar 

  84. Antipov, A., Sukhorukov, G., Donath, E., and Möhwald, H. (2001) Sustained release properties of polyelectrolyte multilayer capsules. J. Phys. Chem. Biol. B. 105(12), 2281–2284.

    Article  CAS  Google Scholar 

  85. Junyaprasert, V., Mitrevej, A., Sinchaipanid, N., Boonme, P., and Wurster, D. (2001) Effect of process variables on the microencapsulation of vitamin A palmitate by gelatin-acacia coacervation. Drug. Dev. Ind. Pharmacol. 27(6), 561–566.

    Article  CAS  Google Scholar 

  86. Dubin, P., Block, J., Davies, R., Schulz, D., Thies, C., eds. (1995) Macromolecular Complexes in Chemistry and Biology. Springler-Verlag, Berlin, pp. 285–324.

    Google Scholar 

  87. Balabushevitch, N. G., Sukhorukov, G. B., Moroz, N. A., et al. (2001) Encapsulation of proteins by layer-by-layer adsorption of poly-electrolytes onto protein aggregates: factors regulating the protein release. Biotechnol. Bioeng. 76(3), 207–213.

    Article  PubMed  CAS  Google Scholar 

  88. Donath, E., Sukhorukov, G. B., Caruso, F., Davis, S. A., and Möhwald, H. (1998) Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes. Angew. Chem. Int. Ed. 37(16), 2201–2205.

    Article  Google Scholar 

  89. Caruso, F., Caruso, R. A., and Möhwald, H. (1998) Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282, 1111–1114.

    Article  PubMed  CAS  Google Scholar 

  90. Discher, B. M., Won, Y., Ege, D. S., Lee, J., Bates, F. S., Discher, D. E., and Hammer, D. A. (1999) Polymersomes: tough vesicles made from diblock copolymers. Science 284, 1143–1146.

    Article  PubMed  CAS  Google Scholar 

  91. Dinsmore, A., Hsu, M., Nikolaides, M., Marquez, M., Bausch, A., and Weitz, D. (2002) Colloidosomes: selectively permeable capsules composed of colloidal particles. Science 298, 1006–1009.

    Article  PubMed  CAS  Google Scholar 

  92. Klitzing, R. V. and Möhwald, H. (1996) A realistic diffusion model for ultrathin polyelectrolyte films. Macromolecules 29, 6901–6906.

    Article  Google Scholar 

  93. Ibarz, G., Dahne, L., Donath, E., and Möhwald, H. (2002) Controlled permeability of polyelectrolyte capsules via defined annealing. Chem. Mater. 14, 4059–4062.

    Article  CAS  Google Scholar 

  94. Sukhorukov, G., Brumen, M., Donath, E., and Möhwald, H. (1999) Hollow polyelectrolyte shells: exclusion of polymers and donnan equilibrium. J. Phys. Chem. Biol. 103, 6434–6440.

    Article  CAS  Google Scholar 

  95. Sukhorukov, G., Donath, E., Moya, S., Susha, A. S., Voigt, A., Hartmann, J., and Möhwald, H. (2000) Microencapsulation by means of step-wise adsorption of polyelectrolytes. J. Microencapsul. 17, 177.

    Article  PubMed  CAS  Google Scholar 

  96. Sukhorukov, G. B., Antipov, A. A., Voigt, A., Donath, E., and Möhwald, H. (2001) pH-controlled macromolecule encapsulation in and release from polyelectrolyte multilayer nanocapsules. Macromol. Rapid Commun. 22, 44–46.

    Article  CAS  Google Scholar 

  97. Tiourina, O., Antipov, A., Sukhorukov, G., Larionova, N., Lvov, Y., and Möhwald, H. (2001) Entrapment of α-chymotrypsin into hollow polyelectrolyte microcapsules. Macromol. Biosci. 1, 209–214.

    Article  CAS  Google Scholar 

  98. Antipov, A. A., Sukhorukov, G., Leporatti, S., Radtchenko, I., Donath, E., and Möhwald, H. (2002) Polyelectrolyte multilayer capsule permeability control. Colloid Surface A. 198–200, 535–541

    Article  Google Scholar 

  99. Mendelson, J., Barret, C., Chan, V., Pal, A., Mayes, A., and Rubner, M. (2000) Fabrication of microporous thin films from polyelectrolyte multilayers. Langmuir 16, 5017–5023.

    Article  CAS  Google Scholar 

  100. Tiourina, O. and Sukhorukov, G. (2002) Multilayer alginate / protamine microsized capsules: encapsulation of α-chymotrypsin and controlled release study. Int. J. Pharmacol. 242, 155–161.

    Article  CAS  Google Scholar 

  101. Bruni, S. and Chang, T. (1989) Hepatocytes immobilised by microencapsulation in artificial cells: effects on hyperbilirubinemia in Gunn rats. Biomater. Artif. Cells. Artif. Organs 17, 403–411.

    PubMed  CAS  Google Scholar 

  102. Fremond, B., Joly, A., Desille, M., Desjardins, J., Campion, J., and Clement, B. Cell-based therapy of acute liver failure: the extracorporeal bioartificial liver. Cell. Biol. Toxicol. 12, 325–329.

  103. Bader, A., Knop, E., Boker, K., et al. (1995) A novel bioreactor design for in vitro reconstruction of in vivo liver characteristics. Artif. Organs 19, 368–374.

    Article  PubMed  CAS  Google Scholar 

  104. Chia, S., Wan, A., Quek, C., et al. (2002) Multilayered microcapsules for cell encapsulation. Biomaterials 23, 849–856.

    Article  PubMed  CAS  Google Scholar 

  105. Ai, H., Fang, M., Lvov, Y., Mills, D., and Jones, S. Applications of the electrostatic layer-by-layer self-assembly technique in biomedical engineering. Proceedings of the Second Joint EMBS/BMES Conference, Houston, TX, 2002, pp. 502, 503.

  106. Neu B, Voigt A, Mitlohner R, et al. (2001) Biological cells as templates for hollow microcapsules. J. Microencapsul. 18, 385–395.

    Article  PubMed  CAS  Google Scholar 

  107. Caruso, F. and Schuler, C. (2000) Enzyme multilayers on colloid particles: assembly, stability, and enzymatic activity. Langmuir 16, 9595–9603.

    Article  CAS  Google Scholar 

  108. Sukhorukov, G. Designed nano-engineering polymer films on colloidal particles and capsules. In: Novel Methods to Study Interfacial Layers. (Möbius, D., Miller, R., eds.). Elsevier, Amsterdam, 2001, pp. 384–416.

    Google Scholar 

  109. Caruso, F., Trau, D., Möhwald, H., and Renneberg, R. (2000) Enzyme encapsulation in layer-by-layer engineered polymer multilayer capsules. Langmuir 16, 1485–1488.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua Ai or Yuri M. Lvov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ai, H., Jones, S.A. & Lvov, Y.M. Biomedical applications of electrostatic layer-by-layer nano-assembly of polymers, enzymes, and nanoparticles. Cell Biochem Biophys 39, 23–43 (2003). https://doi.org/10.1385/CBB:39:1:23

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:39:1:23

Index Entries

Navigation