Skip to main content
Log in

Protective effects of zinc on cadmium toxicity in rodents

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

A study of acute and subacute toxicity of cadmium ions [Cd(II)] was carried out on male Swiss mice and Sprague-Dawley rats with and without previous administration of zinc chloride. The LD50 of Cd(II) as cadmium sulfate (ip) was lower in animals previously given 10 mg/kg of zinc(II) chloride (sc). Factors such as animal weight variations, biochemical parameters, and accumulation patterns of Cd(II) and Zn(II) were taken into consideration when the subacute toxicity was evaluated.

Alteration of the activities of glutamic pyruvic transaminase (GPT) and of glutamic oxaloacetic transaminase (GOT) was observed in short-term-exposure (<6 h) cases. These alterations reverted to normal after 1 wk. The activity of alkaline phosphatase (ALP) and the concentrations of cholesterol and triglycerides in serum are also changed, especially so in the groups given CdSO4 alone. In the experimental groups treated with ZnCl2 prior to administration of cadmium, proteinuria was detected 5 wk after the treatment. Also at 5 wk, both Zn-treated and nontreated groups showed an abnormally low liver mass with respect to total body mass. Both Cd and Zn are retained preferentially in the liver but show also in the kidneys. If CdSO4 and ZnCl2 are given simultaneously, especially after 1 wk of treatment, Cd is accumulated in greater amounts in these organs when compared to the groups given only cadmium sulfate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Nomiyama, in Handbook of Experimental Pharmacology, E. C. Foulkes, ed., Springer-Verlag, New York, Vol. 80, p. 101 (1986).

    Google Scholar 

  2. J. P. Groten, E. J. Sinkeldam, T. Muys, J. B. Luten, and P. J. van Bladeren, Fund. Chem. Toxicol. 29, 249 (1991).

    Article  CAS  Google Scholar 

  3. M. P. Waalkes, J. Toxicol. Environ. Health 18, 301 (1986).

    PubMed  CAS  Google Scholar 

  4. M. Abdulla and J. Chmielnicka, Biol. Trace Element Res. 23, 25 (1990).

    Article  CAS  Google Scholar 

  5. A. González Padrón, J. L. Iglesias, and A. Hardisson, Rev. Toxicol. 12, 86 (1995).

    Google Scholar 

  6. P. L. Goering and C. D. Klaassen, Toxicol. Appl. Pharmacol. 74, 299 (1984).

    Article  PubMed  CAS  Google Scholar 

  7. P. L. Goering and C. D. Klaassen, Toxicol. Appl. Pharmacol. 74, 308 (1984).

    Article  PubMed  CAS  Google Scholar 

  8. Y. Suzuki and H. Yoshikawa, Ind. Health 14, 25 (1976).

    Google Scholar 

  9. S. Kojima, Y. Sugimura, H. Ono, H. Shimada, and T. Funakoshi, Biol. Pharm. Bull. 16, 244 (1993).

    PubMed  CAS  Google Scholar 

  10. T. Shibasaki, Q.-Y. Xu, Y. Ohno, F. Ishimoto, and O. Sakai, Biol. Trace Element Res. 50, 157 (1995).

    CAS  Google Scholar 

  11. M. G. Cherian, J. Toxicol. Environ. Health 6, 379 (1980).

    PubMed  CAS  Google Scholar 

  12. X. Liu, T. Jin, G. F. Nordberg, M. Sjöström, and Y. Zhou, Toxicol. Appl. Pharmacol. 126, 84 (1984).

    Article  Google Scholar 

  13. R. J. Tallarida and R. B. Murray, Manual of Pharmacologic Calculations with Computer Programs, 2nd ed., Springer-Verlag, New York (1987).

    Google Scholar 

  14. C. Claverie, D. Martín, and C. Díaz, Rev. Toxicol. 13, 89 (1996).

    CAS  Google Scholar 

  15. M. C. Linder, in Nutrición: aspectos bioquímicos, metabólicos y clínicos, Ediciones Universidad de Navarra, Pamplona, Spain, p. 204 (1988).

    Google Scholar 

  16. S. J. Flora, J. R. Behari, M. Ashquin, and S. K. Tandom, Chem. Biol. Interact. 42, 345 (1982).

    Article  PubMed  CAS  Google Scholar 

  17. K. Iwami, Y. Dohi, and T. Moriyama, J. Environ. Sci. Health A27, 771 (1992).

    Article  CAS  Google Scholar 

  18. F. W. Bonner, L. J. King, and D. V. Parke, Chem. Biol. Interact. 29, 369 (1980).

    Article  PubMed  CAS  Google Scholar 

  19. H. Yoshikawa, M. Ohsawa, and M. Caneda, Ind. Health 12, 127 (1974).

    Article  CAS  Google Scholar 

  20. F. Akahori, T. Masaoka, S. Arai, K. Nomiyama, H. Nomiyama, K. Kobayashi, et al., Vet. Hum. Toxicol. 36, 290 (1994).

    PubMed  CAS  Google Scholar 

  21. R. R. Lauwerys, A. Bernard, H. A. Roels, J. P. Buchet, and C. Viau, Environ. Health Perspect. 54, 147 (1984).

    Article  PubMed  CAS  Google Scholar 

  22. B. A. Fowler, P. L. Goering, and K. S. Squibb, Experientia 52S, 661 (1987).

    Google Scholar 

  23. N. Sugihira, M. Sagai, and K. T. Suzuki, Toxicology 44, 1 (1987).

    Article  PubMed  CAS  Google Scholar 

  24. T. Y. Jin, P. Leffler, and G. F. Nordberd, Toxicology 45, 307 (1987).

    Article  PubMed  CAS  Google Scholar 

  25. N. Sugihira, C. Tohyama, M. Murakami, and H. Sauto, Toxicology 41, 1 (1986).

    Article  PubMed  CAS  Google Scholar 

  26. N. Kudo, S. Yamashina, and K. Waku, Toxicology 40, 267 (1986).

    Article  PubMed  CAS  Google Scholar 

  27. X Liu, T. Jin, F. Nordberg, M. Sjöström, and Y. Zhou, Toxicol. Appl. Pharmacol. 126, 84 (1994).

    Article  PubMed  CAS  Google Scholar 

  28. F. W. Bonner, L. J. King, and D. V. Park, Toxicology 19, 247 (1981).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Claverie, C., Corbella, R., Martín, D. et al. Protective effects of zinc on cadmium toxicity in rodents. Biol Trace Elem Res 75, 1–9 (2000). https://doi.org/10.1385/BTER:75:1-3:1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:75:1-3:1

Index Entries

Navigation