Skip to main content
Log in

Copper increases the damage to DNA and proteins caused by reactive oxygen species

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Copper [Cu(II)] is an ubiquitous transition and trace element in living organisms. It increases reactive oxygen species (ROS) and free-radical generation that might damage biomolecules like DNA, proteins, and lipids. Furthermore, ability of Cu(II) greatly increases in the presence of oxidants. ROS, like hydroxyl (·OH) and superoxide (·O2) radicals, alter both the structure of the DNA double helix and the nitrogen bases, resulting in mutations like the AT→GC and GC→AT transitions. Proteins, on the other hand, suffer irreversible oxidations and loss in their biological role. Thus, the aim of this investigation is to characterize, in vitro, the structural effects caused by ROS and Cu(II) on bacteriophage λ DNA or proteins using either hydrogen peroxide (H2O2) or ascorbic acid with or without Cu(II). Exposure of DNA to ROS-generating mixtures results in electrophoretic (DNA breaks), spectrophotometric (band broadening, hypochromic, hyperchromic, and bathochromic effects), and calorimetric (denaturation temperature [T d], denaturation enthalpy [ΔH], and heat capacity [C p] values) changes. As for proteins, ROS increased their thermal stability. However, the extent of the observed changes in DNA and proteins were distinct, depending on the efficiency of the systems assayed to generate ROS. The resulting effects were most evident when Cu(II) was present. In summary, these results show that the ROS, ·O2 and ·OH radicals, generated by the Cu(II) systems assayed deeply altered the chemical structure of both DNA and proteins. The physiological relevance of these structural effects should be further investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. I. Fridovich, Quantitative aspects of the production of superoxide anion radical by xanthine oxidase, J. Biol. Chem. 245, 4053–4057 (1970).

    PubMed  CAS  Google Scholar 

  2. J. M. C. Gutteridge, Biological origin of free radicals, and mechanisms of antioxidant protection, Chem.-Biol. Interact. 91, 133–140 (1994).

    Article  Google Scholar 

  3. O. I. Aruoma, B. Halliwell, E. Gajewski, and M. Dizdaroglu, Copper-iron dependent damage to the bases in DNA in the presence of hydrogen peroxide, Biochem. J. 273, 601–604 (1991).

    PubMed  CAS  Google Scholar 

  4. M. Dizdaroglu, O. I. Aruoma, and B. Halliwell, Modification of bases in DNA by copper ion-1,10-phenantroline complexes, Biochemistry 29(36), 8447–8451 (1990).

    Article  PubMed  CAS  Google Scholar 

  5. A. J. F. Griffiths, J. H. Miller, D. T. Suzuki, R. C. Lewontin, and R. C. Gelbart, Genetic Analysis, 5th ed., W. H. Freeman, New York, (1993).

    Google Scholar 

  6. J. R. Wagner, J. E. van Lier, C. Decarroz, M. Berger, and J. Cadet, Photodynamic methods for oxyradical-induced DNA damage, in P. Lester and Al. Glazer (eds.), Oxygen Radicals in Biological Systems, Part B, Academic, Chichester (1990).

    Google Scholar 

  7. K. Kubo, H. Ide, S. S. Wallace, and Y. W. Kow A novel sensitive and specific assay for abasic sites, the most commonly produced DNA lesion, Biochemistry 31(14), 3703–3708 (1992).

    Article  PubMed  CAS  Google Scholar 

  8. R. I. Salganik, I. G. Shabalina, N. A. Solovyova, N. G. Kolosova, V. N. Solovyov, and A. R. Kolpakov, Impairment of respiratory functions in mitochondria of rats with an inherited hyperproduction of free radicals, Biochem. Biophys. Res. Commun. 205(1), 180–185 (1994).

    Article  Google Scholar 

  9. R. Krishnamurthy, R. D. Madurawe, K. D. Bush, and J. A. Lumpkin, Conditions promoting metal-catalized oxidations during immobilized Cu-iminodiacetic acid metal affinity chromatography, Biotechnol. Prog. 11(6), 643–650 (1995).

    Article  CAS  Google Scholar 

  10. B. Geierstanger, T. F. Kagawa, S. L. Chen, G. J. Quigley, and P. S. Ho, Base specific binding of copper (II) to Z-DNA, J. Biol. Chem. 266, 20,185–20,191 (1991).

    CAS  Google Scholar 

  11. D. M. Miller, G. R. Buettner, and S. D. Aust, Transition metals as catalyst of “autoxidation” reactions, Free Radical Res. Biol. Med. 8, 95–108 (1990).

    Article  CAS  Google Scholar 

  12. R. P. Hertzberg and P. B. Dervan, Cleavage of DNA with methydiumpropyl-EDTA-iron(II): reaction conditions and product analyses, Biochemistry 23(17), 3934–3945 (1984).

    Article  PubMed  CAS  Google Scholar 

  13. Y. Wang, and B. Van Ness, Site-specific cleavage of supercoiled DNA by ascorbate/Cu(II), Nucleic Acids Res. 17(17), 6915–6926 (1989).

    Article  PubMed  CAS  Google Scholar 

  14. G. J. Quinlan, T. W. Evans, and J. M. C. Gutteridge, Oxidative damage to plasma proteins in adult respiratory distress syndrome, Free Radical Res. 20(5), 289–298 (1994).

    Google Scholar 

  15. J. M. C. Gutteridge, Invited review. Free radicals in disease processes: a compilation of cause and consequence, Free Radical Res. Commun. 19(3), 141–158 (1993).

    CAS  Google Scholar 

  16. X. Huang, C. S. Atwood, M. A. Hartshorn, et al., The Aβ peptide of Alzheimer's disease directly produces hydrogen peroxide through metal ion reduction, Biochemistry 38(24), 7609–7616 (1999).

    Article  PubMed  CAS  Google Scholar 

  17. T. D. Tullius, and B. A. Dombroski, Iron(II) used to measure the helical twist along any DNA molecule, Science 230, 679–681 (1985).

    Article  PubMed  CAS  Google Scholar 

  18. W. Xu, S. Rao, B. Jampani, H. Deng, and W. H. Braunlin, Chiral recognition of deoxynucleotides by Δ- and Λ-Tris (ethylenediamine)cobalt(III), Biochemistry 34 14,059–14,065 (1995).

    CAS  Google Scholar 

  19. H. Rodríguez, G. P. Holmquist, R. D'Agostino, Jr., J. Séller, and S. A. Akman, Metal ion-dependent hydrogen peroxide-induced DNA damage is more sequence specific than metal specific, Cancer Res. 57(12), 2394–2403 (1997).

    PubMed  Google Scholar 

  20. I. Smirnov and R. H. Shafer, Lead is unusually effective in sequence-specific folding of DNA, J. Mol. Biol. 296, 1–5 (2000).

    Article  PubMed  CAS  Google Scholar 

  21. M. S. Torres, Efecto protector del ácido ascórbico-Cu++ contra la infección del bacteriófago lambda sobre Escherichia coli 837. BSc Thesis. ENCB-IPN, México City (1996).

    Google Scholar 

  22. J. L. Muñoz, P. A. Loyola, and D. Sandoval, Bacteriophage inactivation by ascorbic acid and thiol reducing agents: synergic effect with copper and iron, Ann. Esc. Nac. Cien. Biol. 37, 121–131 (1992).

    Google Scholar 

  23. A. Murata, K. Kitagawa, H. Inmaru, and R. Saruno, Inactivation of single-stranded DNA and RNA phages by ascorbic acid and thiol reducing agents, Agric. Biol. Chem. 36(13), 2597–2599 (1972).

    CAS  Google Scholar 

  24. A. Murata, H. Suenega, S. Hideshima, Y. Tanaka, and F. Kato, Hydroxyl radicals as the reactive species in the inactivation of phages by ascorbic acid, Agric. Biol. Chem. 50(6), 1481–1487 (1986).

    CAS  Google Scholar 

  25. C. Winterbourn, Oxidative reactions of hemoglobin, Methods Enzymol. 186, 265–278 (1990).

    Article  PubMed  CAS  Google Scholar 

  26. R. J. Henry, et al., Clinical Chemistry. Principles and Techniques, 2nd ed., Harper and Row, New York, p. 1288 (1974).

    Google Scholar 

  27. H. Kaur and B. Halliwell, Salicylic acid and phenilalanine as probes to detect hydroxyl radicals, in Free Radicals. A Practical Approach, N. A. Punchard and F. J. Kelly, eds., Oxford University Press, New York, pp. 101–116 (1996).

    Google Scholar 

  28. B. Perbal, A Practical Guide to Molecular Cloning, 2nd ed., Wiley, New York (1988).

    Google Scholar 

  29. C. N. Rao, Ultra-violet and Visible Spectroscopy. Chemical Applications, 3rd ed., Butterworths, Boston (1975).

    Google Scholar 

  30. Anonymous. Shimadzu Manual for the Stand-alone Thermal Analysis Instrument. DSC-50, Differential Scanning Calorimeter.

  31. S. H. Chiou, DNA—and protein-scission activities of ascorbate in the presence of copper ion and a copper-peptide complex, J. Biochem. (Tokyo) 94(4), 1259–1267 (1983).

    CAS  Google Scholar 

  32. F. R. Klenner, Observations on the dose and administration of ascorbic acid when employe beyond the range of A vitamin inhuman pathology, J. Appl. Nutr. 23(3–4), 61–88 (1971).

    Google Scholar 

  33. J. L. Sagripanti and K. H. Kraemer, Site-specific DNA damage at polyguanosines produced by copper plus hydrogen peroxide, J. Biol. Chem. 264, 1729–1734 (1989).

    CAS  Google Scholar 

  34. J. Howard-Parish, Principles and Practice of Experiments with Nucleic Acids. Longman, London (1972).

    Google Scholar 

  35. I. Jelesarov, C. Crane-Robinson, and P. L. Privalov, The energetics of HMG Box interactions with DNA: thermodynamic description of the target DNA duplexes, J. Mol. Biol. 294, 981–995 (1999).

    Article  PubMed  CAS  Google Scholar 

  36. B. Chowdhry and S. C. Cole, Differential scanning calorimetry: applications in biotechnology, TiBtech. 7, 11–18 (1989).

    CAS  Google Scholar 

  37. G. Vogt, S. Woell, and P. Argos, Protein thermal stability, hydrogen bonds and ion pairs, J. Mol. Biol. 269, 631–643 (1997).

    Article  PubMed  CAS  Google Scholar 

  38. K. L. Malisza, A. R. McIntosh, E. Sveinson, and B. B. Hasinoff, Semiquinone free radical formation by daunorubicin aglycone incorporated into cellular membranes of intact chinese hamster ovary cells, Free Radical Res. 24(1), 9–18 (1996).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnulfo Albores.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cervantes-Cervantes, M.P., Calderón-Salinas, J.V., Albores, A. et al. Copper increases the damage to DNA and proteins caused by reactive oxygen species. Biol Trace Elem Res 103, 229–248 (2005). https://doi.org/10.1385/BTER:103:3:229

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:103:3:229

Index Entries

Navigation