Skip to main content
Log in

Recent developments in the biochemistry of chromium(III)

  • Review
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Chromium is generally believed to be an essential trace element and to have a role in maintaining proper carbohydrate and lipid metabolism, probably by enhancing insulin signaling. Three recent events have strongly influenced biochemical and nutritional studies of Cr(III): (1) the Food and Nutrition Board’ new daily adequate intake (AI) of Cr, (2) the Food Standards Agency’s determination that Cr picolinate might have the potential to cause cancer, and (3) the National Institutes of Health’s program announcement “Chromium as an adjuvant therapy for type 2 diabetes and impaired glucose tolerance.” A discussion of these three events allows the current understanding of the nutritional biochemistry of Cr to be outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. A Report of the Panel on Micronutrients, Subcommittee on Upper Reference Levels of Nutrients and of Interpretations and Uses of Dietary Reference Intakes, and the Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, National Academy of Sciences, Washington, DC (2002).

  2. P. Trumbo, A. A. Yates, S. Schlicker, et al., Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc, J. Am. Diet. Assoc. 101, 294–301 (2001).

    Article  PubMed  CAS  Google Scholar 

  3. Recommended Daily Allowances, 9th ed., Report of the Committee on Dietary Allowances, Division of Biological Sciences, Assembly of Life Science, Food and Nutrition Board, National Academy Press, Washington, DC (1980).

  4. Recommended Daily Allowances, 10th ed., Subcommittee on the Tenth Edition of the RDAs, Food and Nutrition Board Commission on Life Sciences, National Research Council, National Academy Press, Washington, DC (1989).

  5. R. A. Anderson, N. A. Bryden, and M. M. Polansky, Dietary chromium intake. Freely chosen diets, institutional diets, and individual foods, Biol. Trace Element Res. 32, 117–121 (1992).

    CAS  Google Scholar 

  6. R. A. Anderson and A. S. Kozlovsky, Chromium intake, absorption and excretion of subjects consuming self-selected diets, Am. J. Clin. Nutr. 41, 1177–1183 (1985).

    PubMed  CAS  Google Scholar 

  7. R. S. Gibson and C. A. Scythes, Chromium, selenium, and other trace element intakes of a selected sample of Canadian premenopausal women, Biol. Trace Element Res. 6, 105–116 (1984).

    Article  CAS  Google Scholar 

  8. E. G. Offenbacher, H. Spencer, H. J. Dowling, et al., Metabolic chromium balances in men, Am. J. Clin. Nutr. 44, 77–82 (1986).

    PubMed  CAS  Google Scholar 

  9. V. W. Bunker, M. S. Lawson, H. T. Delues, et al., The uptake and excretion of chromium by the elderly, Am. J. Clin. Nutr. 39, 797–802 (1984).

    PubMed  CAS  Google Scholar 

  10. K. N. Jeejeebhoy, The role of chromium in nutrition and therapeutics and as a potential toxin, Nutr. Rev. 57, 329–335 (1999).

    Article  PubMed  CAS  Google Scholar 

  11. D. M. Stearns, Is chromium a trace essential metal? Biofactors 11, 149–162 (2000).

    PubMed  CAS  Google Scholar 

  12. J. B. Vincent, The potential value and potential toxicity of chromium picolinate as a nutritional supplement, weight loss agent, and muscle development agent, Sports Med. 33, 213–230 (2003).

    Article  PubMed  Google Scholar 

  13. P. M. Clarkson, Effects of exercise on chromium levels: is supplementation required? Sports Med. 23, 341–349 (1997).

    PubMed  CAS  Google Scholar 

  14. R. B. Kreider, Dietary supplements and the promotion of muscle growth with resistance exercise, Sports Med. 27, 97–110 (1999).

    Article  PubMed  CAS  Google Scholar 

  15. H. C. Lukaski, Chromium as a supplement, Annu. Rev. Nutr. 19, 279–301 (1999).

    Article  PubMed  CAS  Google Scholar 

  16. M. H. Pittler, C. Stevinson, and E. Ernst, Chromium picolinate for reducing body weight: meta-analysis of randomized trials, Int. J. Obes. 27, 522–529 (2003).

    Article  CAS  Google Scholar 

  17. S. L. Nissen and R. L. Sharp, Effect of dietary supplements on lean mass and strength gains with resistance exercise: a meta-analysis, J. Appl. Physiol. 94, 651–659 (2003).

    PubMed  CAS  Google Scholar 

  18. J. B. Vincent, The bioinorganic chemistry of chromium(III), Polyhedron 20, 1–26 (2001).

    Article  CAS  Google Scholar 

  19. M. D. Althius, N. E. Jordan, E. A. Ludington, et al., Glucose and insulin responses to dietary chromium supplements: a meta-analysis, Am. J. Clin. Nutr. 76, 148–155 (2002).

    Google Scholar 

  20. New Advice on Safety of High Doses of Vitamins and Minerals. Available from www.foodstandards.gov.uk/news/newsarchive/safetyhighdosesvitsandmins (accessed 08 May 2003).

  21. G. W. Evans, The effect of chromium picolinate on insulin controlled parameters in humans, Int. J. Biosoc. Med. Res. 11, 163–180 (1989).

    Google Scholar 

  22. D. M. Stearns, J. P. Wise, Sr., S. R. Patierno, et al., Chromium(III) picolinate produces chromosome damage in Chinese hamster ovary cells, FASEB J. 9, 1643–1648 (1995).

    PubMed  CAS  Google Scholar 

  23. D. Bagchi, M. Bagchi, J. Balmoori, et al., Comparative induction of oxidative stress in cultured J774A.1 macrophage cells by chromium picolinate and chromium nicotinate, Res. Commun. Mol. Pathol. Pharmacol. 97, 335–346 (1997).

    PubMed  CAS  Google Scholar 

  24. D. Bagchi, S. J. Stohs, B. W. Downs, et al., Cytotoxicity and oxidative mechanisms of different forms of chromium, Toxicology 180, 5–22 (2002).

    Article  PubMed  CAS  Google Scholar 

  25. K. R. Manygoats, M. Yazzie, and D. M. Stearns, Ultrastructural damage in chromium picolinate-treated cells: a TEM study, J. Biol. Inorg. Chem. 7, 791–798 (2002).

    Article  PubMed  CAS  Google Scholar 

  26. D. M. Stearns, S. M. Silveira, K. K. Wolf, et al., Chromium(III) tris(picolinate) is mutagenic at the hypoxanthine (guanine) phosphoribosyl transferase locus in Chinese hamster ovary cells, Mutat. Res. 513, 135–142 (2002).

    PubMed  CAS  Google Scholar 

  27. H. J. Esber, V. Moreno, and K. S. Loveday, Evaluation of chromium picolinate in the Ames and the rat in vivo chromosomal aberration assays, Mutat. Res. 379 (1 Suppl.), S89 (1997).

    Google Scholar 

  28. J. R. Komorowski and K. Loveday, Rat chromosomes are unharmed by orally administered chromium picolinate, J. Am. Coll. Nutr. 18, 527 (1999).

    Google Scholar 

  29. J. K. Speetjens, R. A. Collins, J. B. Vincent, et al., The nutritional supplement chromium(III) tris(picolinate) cleaves DNA, Chem. Res. Toxicol. 12, 483–487 (1999).

    Article  PubMed  CAS  Google Scholar 

  30. Y. Sun, J. Ramirez, S. A. Woski, et al., The binding of trivalent chromium to low-molecular-weight chromium-binding substance (LMWCr) and the transfer of chromium from transferrin and Cr(pic)3 to LMWCr, J. Biol. Inorg. Chem. 5, 129–136 (2000).

    Article  PubMed  CAS  Google Scholar 

  31. K. D. Sugden, R. D. Geer, and S. G. Rogers, Oxygen radical-mediated DNA damage by redox-active Cr(III) complexes, Biochemistry 31, 11,626–11,631 (1992).

    Article  CAS  Google Scholar 

  32. J. K. Speetjens, A. Parand, M. W. Crowder, et al., Low-molecular-weight chromium-binding substance and biomimetic [Cr3O(O2CCH2CH3)6(H2O)3]+ do not cleave DNA under physiologically relevant conditions, Polyhedron 18, 2617–2624 (1999).

    Article  CAS  Google Scholar 

  33. J. Cerulli, D. W. Grabe, I. Gauthier, et al., Chromium picolinate toxicity, Ann. Pharmacother. 32, 428–431 (1998).

    Article  PubMed  CAS  Google Scholar 

  34. W. G. Wasser and V. D. D’Agati, Chromic renal failure after ingestion of over-the-counter chromium picolinate, Ann. Int. Med. 126. 410 (1997).

    PubMed  CAS  Google Scholar 

  35. W. R. Martin and R. E. Fuller, Suspected chromium picolinate-induced rhabdomyolysis, Pharmacotherapy 18, 860–862 (1998).

    PubMed  CAS  Google Scholar 

  36. J. F. Fowler, Jr., Systemic contact dermatitis caused by oral chromium picolinate, Cutis 65, 116 (2000).

    PubMed  Google Scholar 

  37. J. Huszonek, Over-the-counter chromium picolinate, Am. J. Psychiatry 150, 1560–1561 (1993).

    PubMed  CAS  Google Scholar 

  38. P. C. Young, G. W. Turiansky, M. W. Bonner, et al., Acute generalized exanthematous postulosis induced by chromium picolinate, J. Am. Acad. Dermatol. 41, 820–823 (1999).

    Article  PubMed  CAS  Google Scholar 

  39. S. P. Bunner and R. McGinnis, Chromium-induced hypoglycemia, Psychosomatics 39, 298–299 (1998).

    PubMed  CAS  Google Scholar 

  40. R. A. Anderson, N. A. Bryden, and M. M. Polansky, Lack of toxicity of chromium chloride and chromium picolinate in rats, J. Am. Coll. Nutr. 16, 273–279 (1997).

    PubMed  CAS  Google Scholar 

  41. I. Kato, J. H. Vogelman, V. Dilman, et al., Effect of supplementation with chromium picolinate on antibody titers to 5-hydroxymethyl uracil, Eur. J. Epidemol. 14, 621–626 (1998).

    Article  CAS  Google Scholar 

  42. D. D. D. Hepburn, J. M. Burney, S. A. Woski, et al., The nutritional supplement chromium picolinate generates oxidative DNA damage and peroxidized lipids in vivo, Polyhedron 22, 455–463 (2003).

    Article  CAS  Google Scholar 

  43. L. Mahboob, L. McNeil, T. Tolliver, et al., Effects of chromium picolinate on antioxidant enzyme levels in rats, Toxicol. Sci. 66(1-S), 32 (2002).

    Google Scholar 

  44. D. D. D. Hepburn, J. Xiao, S. Bindom, et al., Nutritional supplement chromium picolinate causes sterility and lethal mutations in Drosophila melanogaster, Proc. Natl. Acad. Sci. USA 100, 3766–3771 (2003).

    Article  PubMed  CAS  Google Scholar 

  45. K. L. Olin, D. M. Stearns, W. H. Armstrong, et al., Comparative retention/adsorption of 51chromium (51Cr) from 51Cr chloride, 51Cr nicotinate, and 51Cr picolinate in a rat model, Trace Elements Electrolytes 11, 182–186 (1994).

    CAS  Google Scholar 

  46. Available from www.grants.nih.gov/grants/guide/pa-files/PA-01-114.html (accessed 2 July 2001).

  47. J. B. Vincent, Elucidating a biological role for chromium at a molecular level, Acc. Chem. Res. 33, 503–510 (2000).

    Article  PubMed  CAS  Google Scholar 

  48. B. W. Morris, S. MacNeil, C. A. Hardisty, S. Heller, et al., Chromium homeostasis in patients with type II (NIDDM) diabetes, J. Trace Elements Med. Biol. 13, 57–61 (1999).

    CAS  Google Scholar 

  49. B. Morris, S. MacNeil, R. Fraser, et al., Increased urine chromium excretion in normal pregnancy, Clin. Chem. 41, 1544–1545 (1995).

    PubMed  CAS  Google Scholar 

  50. R. A. Anderson, Chromium, glucose tolerance and diabetes, J. Am. Coll. Nutr. 17, 548–555 (1998).

    PubMed  CAS  Google Scholar 

  51. W. H. Glinsmann and W. Mertz, Effect of trivalent chromium on glucose tolerance, Metabolism 15, 510–520 (1966).

    Article  PubMed  CAS  Google Scholar 

  52. L. Sherman, J. A. Glennon, W. J. Brech, et al., Failure of trivalent chromium to improve hyperglycemia in diabetes mellitus, Metabolism 17, 439–442 (1968).

    Article  PubMed  CAS  Google Scholar 

  53. R. Nath, J. Minocha, V. Lyall, et al., Assessment of chromium metabolism in maturityonset and juvenile diabetes using chromium-51 and therapeutic response of chromium administration on plasma lipids, glucose tolerance, and insulin levels, in Chromium in Nutrition and Metabolism, D. Shapcott and J. Huberts, eds., Elsevier/North-Holland Biomedical, Amsterdam, pp. 213–222 (1979).

    Google Scholar 

  54. E. G. Offenbacher and F. X. Pi-Sunyer, Beneficial effect of chromium-rich yeast on glucose tolerance and blood lipids in elderly subjects, Diabetes 29, 919–925 (1980).

    Article  PubMed  CAS  Google Scholar 

  55. A. N. Elias, K. Grossman, and L. J. Valenta, Use of artificial beta cell (ABC) in the assessment of peripheral insulin sensitivity: effect of chromium supplementation in diabetic subjects, Gen. Pharmacol. 15, 535–539 (1984).

    PubMed  CAS  Google Scholar 

  56. R. T. Mossop, Effects of chromium(III) on fasting blood glucose, cholesterol and cholesterol HDL levels in diabetes, Centr. Africa J. Med. 29, 80–82 (1983).

    CAS  Google Scholar 

  57. O. B. Martinez, A. C. MacDonald, R. Gibson, et al., Dietary chromium and effect of chromium supplementation on glucose tolerance of elderly Canadian women, Nutr. Res. 5, 609–620 (1985).

    Article  CAS  Google Scholar 

  58. M. B. Rabinowitz, H. C. Gonick, S. R. Levin, et al., Clinical trial of chromium and yeast supplements on carbohydrate and lipid metabolism in diabetic men, Biol. Trace Element Res. 5, 449–466 (1983).

    Article  CAS  Google Scholar 

  59. M. I. J. Uusitupa, J. T. Kumpulainen, E. Voutilainen, et al., Effect of inorganic chromium supplementation on glucose tolerance, insulin response, and serum lipids in noninsulin-dependent diabetes, Am. J. Clin. Nutr. 38, 404–410 (1983).

    PubMed  CAS  Google Scholar 

  60. P. M. Clarkson, Nutritional erogogenic aids: chromium, exercise, and muscle mass, Int. J. Sport Nutr. 1, 289–293 (1991).

    PubMed  CAS  Google Scholar 

  61. R. J. Moore and K. E. Friedl, Ergogenic aids: physiology of nutritional supplements: chromium picolinate and vanadyl sulfate, Natl. Strength Conditioning Assoc. J. 14, 47–51 (1992).

    Article  Google Scholar 

  62. R. G. Lefavi, R. A. Anderson, R. E. Keith, et al., Efficacy of chromium supplementation in athletes: emphasis on anabolism, Int. J. Sport Nutr. 2, 111–122 (1992).

    PubMed  CAS  Google Scholar 

  63. D. Whitmire, Vitamins and minerals: a perspective in physical performance, in Sports Nutrition for the 90s, J. R. Berning and S. N. Steen, eds., Aspen, Gaithersburg, MD, pp. 129–151 (1991).

    Google Scholar 

  64. A. S. Abraham, B. A. Brooks, and U. Eylath, The effects of chromium supplementation on serum glucose and lipids in patients with and without non-insulin-dependent diabetes, Metabolism 41, 768–771 (1992).

    Article  PubMed  CAS  Google Scholar 

  65. N. A. Lee and C. A. Reasner, Beneficial effect of chromium supplementation on serum triglycerides levels in NIDDM, Diabetes Care 17, 1449–1452 (1994).

    Article  PubMed  CAS  Google Scholar 

  66. V. L. K. Thomas and S. S. Gropper, Effect of chromium nicotinic acid supplementation on selected cardiovascular disease risk factors, Biol. Trace Element Res. 55, 297–305 (1997).

    Google Scholar 

  67. B. Bahadori, W. Sandra, C. Hacker, et al., Effects of chromium picolinate on insulin levels and glucose control in obese patients with type-II diabetes mellitus, Diabetes 48(Suppl. 1), A349 (1999).

    Google Scholar 

  68. R. A. Anderson, N. C. Cheng, N. A. Bryden, et al., Elevated levels of supplemental chromium improve glucose and insulin variables in individuals with type 2 diabetes, Diabetes 46, 1786–1791 (1997).

    Article  PubMed  CAS  Google Scholar 

  69. M. K. Hellerstein, Is chromium supplementation effective in managing type II diabetes? Nutr. Rev. 56, 302–306 (1998).

    Article  PubMed  CAS  Google Scholar 

  70. N. Cheng, X. Zhu, H. Shi, et al., Follow-up survey of people in China with type 2 diabetes mellitus consuming supplemental chromium, J. Trace Elements Exp. Med. 12, 55–60 (1999).

    Article  Google Scholar 

  71. A. Ravina and L. Slezack, Chromium in the treatment of clinical diabetes mellitus, Harefuah 125, 142–145 (1993).

    PubMed  CAS  Google Scholar 

  72. A. Ravina, L. Slezak, A. Rubal, et al., Clinical use of the trace element chromium(III) in the treatment of diabetes mellitus, J. Trace Elements Exp. Med. 8, 183–190 (1995).

    CAS  Google Scholar 

  73. R. A. Anderson, A.-M. Roussel, N. Zouari, et al., Potential antioxidant effects of zinc and chromium supplementation of people with type 2 diabetes mellitus, J. Am. Coll. Nutr. 20, 212–218 (2001).

    PubMed  CAS  Google Scholar 

  74. L. G. Trow, J. Lewis, R. H. Greenwood, et al., Lack of effect of chromium supplementation on glucose tolerance, plasma insulin and lipoprotein levels in patients with type 2 diabetes, Int. J. Vitam. Nutr. Res. 70, 14–18 (2000).

    Article  PubMed  CAS  Google Scholar 

  75. B. M. Morris, S. Kouta, R. Robinson, et al., Chromium supplementation improves insulin resistance in patients with type 2 diabetes mellitus, Diabetic Med. 17, 684–686 (2000).

    Article  PubMed  CAS  Google Scholar 

  76. H. Rabinovitz, A. Leibovitz, Z. Madar, et al., Blood glucose and lipid levels following chromium supplementation in diabetic elderly patients on a rehabilitation program, Gerontologist 40(S), 38 (2000).

    Google Scholar 

  77. D. Ghosh, B. Bhattacharya, B. Mukherjee, et al., Role of chromium supplementation in Indians with type 2 diabetes mellitus, J. Nutr. Biochem. 13, 690–697 (2002).

    Article  PubMed  CAS  Google Scholar 

  78. S. M. Bahijri, S. M. Mira, A. M. Mufti, et al., The effects of inorganic chromium and brewer’s yeast supplementation on glucose tolerance, serum lipids and drug dosage in individuals with type 2 diabetes, Saudi Med. J. 21, 831–837 (2000).

    Google Scholar 

  79. S. M. A. Bahijri and A. M. B. Mufti, Beneficial effects of chromium in people with type 2 diabetes, and urinary chromium response to glucose load as a possible indicator of status, Biol. Trace Element Res. 85, 97–109 (2002).

    Article  CAS  Google Scholar 

  80. Y. Sun, K. Mallya, J. Ramirez, et al., The biomimetic [Cr3O(O2CCH2CH3)6(H2O3]+ decreases cholesterol and triglycerides in rats: towards chromium-containing therapeutics, J. Biol. Inorg. Chem. 4, 838–845 (1999).

    Article  PubMed  CAS  Google Scholar 

  81. Y. Sun, B. J. Clodfelder, A. A. Shute, et al., The biomimetic [Cr3O(O2CCH2CH3)6(H2O3]+ decreases plasma insulin, cholesterol and triglycerides in healthy and type II diabetic rats but not type I diabetic rats, J. Biol. Inorg. Chem. 7, 852–862 (2002).

    Article  PubMed  CAS  Google Scholar 

  82. W. T. Cefalu, Z. Q. Wang, X. H. Zhang, et al., Oral chromium picolinate improves carbohydrate and lipid metabolism and enhances skeletal muscle Glut-4 translocation in obese, hyperinsulinemic (JCR-LA corpulent) rats, J. Nutr. 132, 1107–1114 (2002).

    PubMed  CAS  Google Scholar 

  83. L. Jovanovic, M. Gutierrez, and C. M. Peterson, Chromium supplementation for women with gestational diabetes mellitus, J. Trace Elements Exp. Med. 12, 91–97 (1999).

    Article  CAS  Google Scholar 

  84. A. Ravina, L. Slezak, N. Mirsky, et al., Control of steroid-induced diabetes with supplemental chromium, J. Trace Elements Med. Biol. 12, 375–378 (1999).

    Article  CAS  Google Scholar 

  85. A. Ravina, L. Slezak, N. Mirsky, et al., Reversal of corticosteroid-induced diabetes mellitus with supplemental chromium, Diabetic Med. 16, 164–167 (1999).

    Article  PubMed  CAS  Google Scholar 

  86. D.-S. Kim, T.-W. Kim, I.-K. Park, et al., Effects of chromium picolinate supplementation on insulin sensitivity, serum lipids, and body weight in dexamethasone-treated rats, Metabolism 51, 589–594 (2002).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vincent, J.B. Recent developments in the biochemistry of chromium(III). Biol Trace Elem Res 99, 1–16 (2004). https://doi.org/10.1385/BTER:99:1-3:001

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:99:1-3:001

Index Entries

Navigation